1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439
// Copyright 2015 Colin Sherratt
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
use std::cell::UnsafeCell;
use std::fmt::{self, Debug, Formatter};
use std::marker::PhantomData;
use std::mem;
use std::ops::Deref;
use std::ptr;
use std::sync::atomic::AtomicPtr;
use std::sync::atomic::Ordering;
use std::sync::Arc;
/// An Atom wraps an AtomicPtr, it allows for safe mutation of an atomic
/// into common Rust Types.
pub struct Atom<P>
where
P: IntoRawPtr + FromRawPtr,
{
inner: AtomicPtr<()>,
data: PhantomData<UnsafeCell<P>>,
}
impl<P> Debug for Atom<P>
where
P: IntoRawPtr + FromRawPtr,
{
fn fmt(&self, f: &mut Formatter) -> Result<(), fmt::Error> {
write!(f, "atom({:?})", self.inner.load(Ordering::Relaxed))
}
}
impl<P> Atom<P>
where
P: IntoRawPtr + FromRawPtr,
{
/// Create a empty Atom
pub fn empty() -> Atom<P> {
Atom {
inner: AtomicPtr::new(ptr::null_mut()),
data: PhantomData,
}
}
/// Create a new Atomic from Pointer P
pub fn new(value: P) -> Atom<P> {
Atom {
inner: AtomicPtr::new(value.into_raw()),
data: PhantomData,
}
}
/// Swap a new value into the Atom, This will try multiple
/// times until it succeeds. The old value will be returned.
pub fn swap(&self, v: P, order: Ordering) -> Option<P> {
let new = v.into_raw();
let old = self.inner.swap(new, order);
unsafe { Self::inner_from_raw(old) }
}
/// Take the value of the Atom replacing it with null pointer
/// Returning the contents. If the contents was a `null` pointer the
/// result will be `None`.
pub fn take(&self, order: Ordering) -> Option<P> {
let old = self.inner.swap(ptr::null_mut(), order);
unsafe { Self::inner_from_raw(old) }
}
/// This will do a `CAS` setting the value only if it is NULL
/// this will return `None` if the value was written,
/// otherwise a `Some(v)` will be returned, where the value was
/// the same value that you passed into this function
pub fn set_if_none(&self, v: P, order: Ordering) -> Option<P> {
let new = v.into_raw();
let old = self.inner.compare_and_swap(ptr::null_mut(), new, order);
if !old.is_null() {
Some(unsafe { FromRawPtr::from_raw(new) })
} else {
None
}
}
/// Take the current content, write it into P then do a CAS to extent this
/// Atom with the previous contents. This can be used to create a LIFO
///
/// Returns true if this set this migrated the Atom from null.
pub fn replace_and_set_next(
&self,
mut value: P,
load_order: Ordering,
cas_order: Ordering,
) -> bool
where
P: GetNextMut<NextPtr = Option<P>>,
{
let next = value.get_next() as *mut Option<P>;
let raw = value.into_raw();
// If next was set to Some(P) we want to
// assert that it was droppeds
unsafe { ptr::drop_in_place(next) };
loop {
let pcurrent = self.inner.load(load_order);
let current = unsafe { Self::inner_from_raw(pcurrent) };
unsafe { ptr::write(next, current) };
let last = self.inner.compare_and_swap(pcurrent, raw, cas_order);
if last == pcurrent {
return last.is_null();
}
}
}
/// Check to see if an atom is None
///
/// This only means that the contents was None when it was measured
pub fn is_none(&self, order: Ordering) -> bool {
self.inner.load(order).is_null()
}
#[inline]
fn inner_into_raw(val: Option<P>) -> *mut () {
match val {
Some(val) => val.into_raw(),
None => ptr::null_mut(),
}
}
#[inline]
unsafe fn inner_from_raw(ptr: *mut ()) -> Option<P> {
if !ptr.is_null() {
Some(FromRawPtr::from_raw(ptr))
} else {
None
}
}
}
impl<P, T> Atom<P>
where
P: IntoRawPtr + FromRawPtr + Deref<Target = T>,
{
/// Stores `new` in the Atom if `current` has the same raw pointer
/// representation as the currently stored value.
///
/// On success, the Atom's previous value is returned. On failure, `new` is
/// returned together with a raw pointer to the Atom's current unchanged
/// value, which is **not safe to dereference**, especially if the Atom is
/// accessed from multiple threads.
///
/// `compare_and_swap` also takes an `Ordering` argument which describes
/// the memory ordering of this operation.
pub fn compare_and_swap(
&self,
current: Option<&P>,
new: Option<P>,
order: Ordering,
) -> Result<Option<P>, (Option<P>, *mut P)> {
let pcurrent = Self::inner_as_ptr(current);
let pnew = Self::inner_into_raw(new);
let pprev = self.inner.compare_and_swap(pcurrent, pnew, order);
if pprev == pcurrent {
Ok(unsafe { Self::inner_from_raw(pprev) })
} else {
Err((unsafe { Self::inner_from_raw(pnew) }, pprev as *mut P))
}
}
/// Stores a value into the pointer if the current value is the same as the
/// `current` value.
///
/// The return value is a result indicating whether the new value was
/// written and containing the previous value. On success this value is
/// guaranteed to be equal to `current`.
///
/// `compare_exchange` takes two `Ordering` arguments to describe the
/// memory ordering of this operation. The first describes the required
/// ordering if the operation succeeds while the second describes the
/// required ordering when the operation fails. The failure ordering can't
/// be `Release` or `AcqRel` and must be equivalent or weaker than the
/// success ordering.
pub fn compare_exchange(
&self,
current: Option<&P>,
new: Option<P>,
success: Ordering,
failure: Ordering,
) -> Result<Option<P>, (Option<P>, *mut P)> {
let pnew = Self::inner_into_raw(new);
self.inner
.compare_exchange(Self::inner_as_ptr(current), pnew, success, failure)
.map(|pprev| unsafe { Self::inner_from_raw(pprev) })
.map_err(|pprev| (unsafe { Self::inner_from_raw(pnew) }, pprev as *mut P))
}
/// Stores a value into the pointer if the current value is the same as the
/// `current` value.
///
/// Unlike `compare_exchange`, this function is allowed to spuriously fail
/// even when the comparison succeeds, which can result in more efficient
/// code on some platforms. The return value is a result indicating whether
/// the new value was written and containing the previous value.
///
/// `compare_exchange_weak` takes two `Ordering` arguments to describe the
/// memory ordering of this operation. The first describes the required
/// ordering if the operation succeeds while the second describes the
/// required ordering when the operation fails. The failure ordering can't
/// be `Release` or `AcqRel` and must be equivalent or weaker than the
/// success ordering.
pub fn compare_exchange_weak(
&self,
current: Option<&P>,
new: Option<P>,
success: Ordering,
failure: Ordering,
) -> Result<Option<P>, (Option<P>, *mut P)> {
let pnew = Self::inner_into_raw(new);
self.inner
.compare_exchange_weak(Self::inner_as_ptr(current), pnew, success, failure)
.map(|pprev| unsafe { Self::inner_from_raw(pprev) })
.map_err(|pprev| (unsafe { Self::inner_from_raw(pnew) }, pprev as *mut P))
}
#[inline]
fn inner_as_ptr(val: Option<&P>) -> *mut () {
match val {
Some(val) => &**val as *const _ as *mut (),
None => ptr::null_mut(),
}
}
}
impl<P> Drop for Atom<P>
where
P: IntoRawPtr + FromRawPtr,
{
fn drop(&mut self) {
self.take(Ordering::Relaxed);
}
}
unsafe impl<P> Send for Atom<P>
where
P: IntoRawPtr + FromRawPtr + Send,
{
}
unsafe impl<P> Sync for Atom<P>
where
P: IntoRawPtr + FromRawPtr + Send,
{
}
/// Convert from into a raw pointer
pub trait IntoRawPtr {
fn into_raw(self) -> *mut ();
}
/// Convert from a raw ptr into a pointer
pub trait FromRawPtr {
unsafe fn from_raw(ptr: *mut ()) -> Self;
}
impl<T> IntoRawPtr for Box<T> {
#[inline]
fn into_raw(self) -> *mut () {
Box::into_raw(self) as *mut ()
}
}
impl<T> FromRawPtr for Box<T> {
#[inline]
unsafe fn from_raw(ptr: *mut ()) -> Box<T> {
Box::from_raw(ptr as *mut T)
}
}
impl<T> IntoRawPtr for Arc<T> {
#[inline]
fn into_raw(self) -> *mut () {
Arc::into_raw(self) as *mut T as *mut ()
}
}
impl<T> FromRawPtr for Arc<T> {
#[inline]
unsafe fn from_raw(ptr: *mut ()) -> Arc<T> {
Arc::from_raw(ptr as *const () as *const T)
}
}
// This impl can be useful for stack-allocated and 'static values.
impl<'a, T> IntoRawPtr for &'a T {
#[inline]
fn into_raw(self) -> *mut () {
self as *const _ as *mut ()
}
}
impl<'a, T> FromRawPtr for &'a T {
#[inline]
unsafe fn from_raw(ptr: *mut ()) -> &'a T {
&*(ptr as *mut T)
}
}
/// Transforms lifetime of the second pointer to match the first.
#[inline]
unsafe fn copy_lifetime<'a, S: ?Sized, T: ?Sized + 'a>(_ptr: &'a S, ptr: &T) -> &'a T {
&*(ptr as *const T)
}
/// Transforms lifetime of the second pointer to match the first.
#[inline]
#[allow(unknown_lints, mut_from_ref)]
unsafe fn copy_mut_lifetime<'a, S: ?Sized, T: ?Sized + 'a>(_ptr: &'a S, ptr: &mut T) -> &'a mut T {
&mut *(ptr as *mut T)
}
/// This is a restricted version of the Atom. It allows for only
/// `set_if_none` to be called.
///
/// `swap` and `take` can be used only with a mutable reference. Meaning
/// that AtomSetOnce is not usable as a
#[derive(Debug)]
pub struct AtomSetOnce<P>
where
P: IntoRawPtr + FromRawPtr,
{
inner: Atom<P>,
}
impl<P> AtomSetOnce<P>
where
P: IntoRawPtr + FromRawPtr,
{
/// Create an empty `AtomSetOnce`
pub fn empty() -> AtomSetOnce<P> {
AtomSetOnce {
inner: Atom::empty(),
}
}
/// Create a new `AtomSetOnce` from Pointer P
pub fn new(value: P) -> AtomSetOnce<P> {
AtomSetOnce {
inner: Atom::new(value),
}
}
/// This will do a `CAS` setting the value only if it is NULL
/// this will return `OK(())` if the value was written,
/// otherwise a `Err(P)` will be returned, where the value was
/// the same value that you passed into this function
pub fn set_if_none(&self, v: P, order: Ordering) -> Option<P> {
self.inner.set_if_none(v, order)
}
/// Convert an `AtomSetOnce` into an `Atom`
pub fn into_atom(self) -> Atom<P> {
self.inner
}
/// Allow access to the atom if exclusive access is granted
pub fn atom(&mut self) -> &mut Atom<P> {
&mut self.inner
}
/// Check to see if an atom is None
///
/// This only means that the contents was None when it was measured
pub fn is_none(&self, order: Ordering) -> bool {
self.inner.is_none(order)
}
}
impl<T, P> AtomSetOnce<P>
where
P: IntoRawPtr + FromRawPtr + Deref<Target = T>,
{
/// If the Atom is set, get the value
pub fn get(&self, order: Ordering) -> Option<&T> {
let ptr = self.inner.inner.load(order);
let val = unsafe { Atom::inner_from_raw(ptr) };
val.map(|v: P| {
// This is safe since ptr cannot be changed once it is set
// which means that this is now a Arc or a Box.
let out = unsafe { copy_lifetime(self, &*v) };
mem::forget(v);
out
})
}
}
impl<T> AtomSetOnce<Box<T>> {
/// If the Atom is set, get the value
pub fn get_mut(&mut self, order: Ordering) -> Option<&mut T> {
let ptr = self.inner.inner.load(order);
let val = unsafe { Atom::inner_from_raw(ptr) };
val.map(move |mut v: Box<T>| {
// This is safe since ptr cannot be changed once it is set
// which means that this is now a Arc or a Box.
let out = unsafe { copy_mut_lifetime(self, &mut *v) };
mem::forget(v);
out
})
}
}
impl<T> AtomSetOnce<T>
where
T: Clone + IntoRawPtr + FromRawPtr,
{
/// Duplicate the inner pointer if it is set
pub fn dup(&self, order: Ordering) -> Option<T> {
let ptr = self.inner.inner.load(order);
let val = unsafe { Atom::inner_from_raw(ptr) };
val.map(|v: T| {
let out = v.clone();
mem::forget(v);
out
})
}
}
/// This is a utility Trait that fetches the next ptr from
/// an object.
pub trait GetNextMut {
type NextPtr;
fn get_next(&mut self) -> &mut Self::NextPtr;
}