1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522
use std::borrow::Cow;
use std::io;
use std::cmp;
use std::mem;
use std::iter;
use std::io::prelude::*;
use crate::common::{Block, Frame};
mod decoder;
pub use self::decoder::{
PLTE_CHANNELS, StreamingDecoder, Decoded, DecodingError, DecodingFormatError, Extensions,
Version
};
const N_CHANNELS: usize = 4;
/// Output mode for the image data
#[derive(Clone, Copy, Debug, PartialEq)]
#[repr(u8)]
pub enum ColorOutput {
/// The decoder expands the image data to 32bit RGBA.
/// This affects:
///
/// - The buffer buffer of the `Frame` returned by `Decoder::read_next_frame`.
/// - `Decoder::fill_buffer`, `Decoder::buffer_size` and `Decoder::line_length`.
RGBA = 0,
/// The decoder returns the raw indexed data.
Indexed = 1,
}
#[derive(Clone, Debug)]
/// Memory limit in bytes. `MemoryLimit(0)` means
/// that there is no memory limit set.
pub struct MemoryLimit(pub u32);
impl MemoryLimit {
/// Enforce no memory limit.
///
/// If you intend to process images from unknown origins this is a potentially dangerous
/// constant to use, as your program could be vulnerable to decompression bombs. That is,
/// malicious images crafted specifically to require an enormous amount of memory to process
/// while having a disproportionately small file size.
///
/// The risks for modern machines are a bit smaller as the dimensions of each frame can not
/// exceed `u32::MAX` (~4Gb) but this is still a significant amount of memory.
pub const NONE: MemoryLimit = MemoryLimit(0);
fn buffer_size(&self, color: ColorOutput, width: u16, height: u16) -> Option<usize> {
let pixels = u32::from(width) * u32::from(height);
let bytes_per_pixel = match color {
ColorOutput::Indexed => 1,
ColorOutput::RGBA => 4,
};
if self.0 > 0 && pixels > self.0 / bytes_per_pixel {
None
} else {
Some(pixels as usize * bytes_per_pixel as usize)
}
}
}
/// Options for opening a GIF decoder.
#[derive(Clone, Debug)]
pub struct DecodeOptions {
memory_limit: MemoryLimit,
color_output: ColorOutput,
check_frame_consistency: bool,
check_for_end_code: bool,
allow_unknown_blocks: bool,
}
impl DecodeOptions {
/// Creates a new decoder builder
pub fn new() -> DecodeOptions {
DecodeOptions {
memory_limit: MemoryLimit(50_000_000), // 50 MB
color_output: ColorOutput::Indexed,
check_frame_consistency: false,
check_for_end_code: false,
allow_unknown_blocks: false,
}
}
/// Configure how color data is decoded.
pub fn set_color_output(&mut self, color: ColorOutput) {
self.color_output = color;
}
/// Configure a memory limit for decoding.
pub fn set_memory_limit(&mut self, limit: MemoryLimit) {
self.memory_limit = limit;
}
/// Configure if frames must be within the screen descriptor.
///
/// The default is `false`.
///
/// When turned on, all frame descriptors being read must fit within the screen descriptor or
/// otherwise an error is returned and the stream left in an unspecified state.
///
/// When turned off, frames may be arbitrarily larger or offset in relation to the screen. Many
/// other decoder libraries handle this in highly divergent ways. This moves all checks to the
/// caller, for example to emulate a specific style.
pub fn check_frame_consistency(&mut self, check: bool) {
self.check_frame_consistency = check;
}
/// Configure if LZW encoded blocks must end with a marker end code.
///
/// The default is `false`.
///
/// When turned on, all image data blocks—which are LZW encoded—must contain a special bit
/// sequence signalling the end of the data. LZW processing terminates when this code is
/// encountered. The specification states that it must be the last code output by the encoder
/// for an image.
///
/// When turned off then image data blocks can simply end. Note that this might silently ignore
/// some bits of the last or second to last byte.
pub fn check_lzw_end_code(&mut self, check: bool) {
self.check_for_end_code = check;
}
/// Configure if unknown blocks are allowed to be decoded.
///
/// The default is `false`.
///
/// When turned on, the decoder will allow unknown blocks to be in the
/// `BlockStart` position.
///
/// When turned off, decoded block starts must mark an `Image`, `Extension`,
/// or `Trailer` block. Otherwise, the decoded image will return an error.
/// If an unknown block error is returned from decoding, enabling this
/// setting may allow for a further state of decoding on the next attempt.
pub fn allow_unknown_blocks(&mut self, check: bool) {
self.allow_unknown_blocks = check;
}
/// Reads the logical screen descriptor including the global color palette
///
/// Returns a `Decoder`. All decoder configuration has to be done beforehand.
pub fn read_info<R: Read>(self, r: R) -> Result<Decoder<R>, DecodingError> {
Decoder::with_no_init(r, StreamingDecoder::with_options(&self), self).init()
}
}
struct ReadDecoder<R: Read> {
reader: io::BufReader<R>,
decoder: StreamingDecoder,
at_eof: bool
}
impl<R: Read> ReadDecoder<R> {
fn decode_next(&mut self) -> Result<Option<Decoded>, DecodingError> {
while !self.at_eof {
let (consumed, result) = {
let buf = self.reader.fill_buf()?;
if buf.len() == 0 {
return Err(DecodingError::format(
"unexpected EOF"
))
}
self.decoder.update(buf)?
};
self.reader.consume(consumed);
match result {
Decoded::Nothing => (),
Decoded::BlockStart(Block::Trailer) => {
self.at_eof = true
},
result => return Ok(unsafe{
// FIXME: #6393
Some(mem::transmute::<Decoded, Decoded>(result))
}),
}
}
Ok(None)
}
}
#[allow(dead_code)]
/// GIF decoder
pub struct Decoder<R: Read> {
decoder: ReadDecoder<R>,
color_output: ColorOutput,
memory_limit: MemoryLimit,
bg_color: Option<u8>,
global_palette: Option<Vec<u8>>,
current_frame: Frame<'static>,
buffer: Vec<u8>,
}
impl<R> Decoder<R> where R: Read {
/// Create a new decoder with default options.
pub fn new(reader: R) -> Result<Self, DecodingError> {
DecodeOptions::new().read_info(reader)
}
/// Return a builder that allows configuring limits etc.
pub fn build() -> DecodeOptions {
DecodeOptions::new()
}
fn with_no_init(reader: R, decoder: StreamingDecoder, options: DecodeOptions) -> Decoder<R> {
Decoder {
decoder: ReadDecoder {
reader: io::BufReader::new(reader),
decoder,
at_eof: false
},
bg_color: None,
global_palette: None,
buffer: Vec::with_capacity(32),
color_output: options.color_output,
memory_limit: options.memory_limit,
current_frame: Frame::default(),
}
}
fn init(mut self) -> Result<Self, DecodingError> {
loop {
match self.decoder.decode_next()? {
Some(Decoded::BackgroundColor(bg_color)) => {
self.bg_color = Some(bg_color)
}
Some(Decoded::GlobalPalette(palette)) => {
self.global_palette = if palette.len() > 0 {
Some(palette)
} else {
None
};
break
},
Some(_) => {
// Unreachable since this loop exists after the global
// palette has been read.
unreachable!()
},
None => return Err(DecodingError::format(
"file does not contain any image data"
))
}
}
// If the background color is invalid, ignore it
if let Some(ref palette) = self.global_palette {
if self.bg_color.unwrap_or(0) as usize >= (palette.len() / PLTE_CHANNELS) {
self.bg_color = None;
}
}
Ok(self)
}
/// Returns the next frame info
pub fn next_frame_info(&mut self) -> Result<Option<&Frame<'static>>, DecodingError> {
if !self.buffer.is_empty() {
// FIXME: Warn about discarding data?
self.buffer.clear();
}
loop {
match self.decoder.decode_next()? {
Some(Decoded::Frame(frame)) => {
self.current_frame = frame.clone();
if frame.palette.is_none() && self.global_palette.is_none() {
return Err(DecodingError::format(
"no color table available for current frame"
))
}
break
},
Some(_) => (),
None => return Ok(None)
}
}
Ok(Some(&self.current_frame))
}
/// Reads the next frame from the image.
///
/// Do not call `Self::next_frame_info` beforehand.
/// Deinterlaces the result.
pub fn read_next_frame(&mut self) -> Result<Option<&Frame<'static>>, DecodingError> {
if let Some(frame) = self.next_frame_info()? {
let (width, height) = (frame.width, frame.height);
let pixel_bytes = self.memory_limit
.buffer_size(self.color_output, width, height)
.ok_or_else(|| {
DecodingError::format("image is too large to decode")
})?;
debug_assert_eq!(
pixel_bytes, self.buffer_size(),
"Checked computation diverges from required buffer size"
);
let mut vec = vec![0; pixel_bytes];
self.read_into_buffer(&mut vec)?;
self.current_frame.buffer = Cow::Owned(vec);
self.current_frame.interlaced = false;
Ok(Some(&self.current_frame))
} else {
Ok(None)
}
}
/// Reads the data of the current frame into a pre-allocated buffer.
///
/// `Self::next_frame_info` needs to be called beforehand.
/// The length of `buf` must be at least `Self::buffer_size`.
/// Deinterlaces the result.
pub fn read_into_buffer(&mut self, buf: &mut [u8]) -> Result<(), DecodingError> {
if self.current_frame.interlaced {
let width = self.line_length();
let height = self.current_frame.height as usize;
for row in (InterlaceIterator { len: height, next: 0, pass: 0 }) {
if !self.fill_buffer(&mut buf[row*width..][..width])? {
return Err(DecodingError::format("image truncated"))
}
}
} else {
let buf = &mut buf[..self.buffer_size()];
if !self.fill_buffer(buf)? {
return Err(DecodingError::format("image truncated"))
}
};
Ok(())
}
/// Reads data of the current frame into a pre-allocated buffer until the buffer has been
/// filled completely.
///
/// `Self::next_frame_info` needs to be called beforehand. Returns `true` if the supplied
/// buffer could be filled completely. Should not be called after `false` had been returned.
pub fn fill_buffer(&mut self, mut buf: &mut [u8]) -> Result<bool, DecodingError> {
use self::ColorOutput::*;
const PLTE_CHANNELS: usize = 3;
macro_rules! handle_data(
($data:expr) => {
match self.color_output {
RGBA => {
let transparent = self.current_frame.transparent;
let palette: &[u8] = match self.current_frame.palette {
Some(ref table) => &*table,
None => &*self.global_palette.as_ref().unwrap(),
};
let len = cmp::min(buf.len()/N_CHANNELS, $data.len());
for (rgba, &idx) in buf[..len*N_CHANNELS].chunks_mut(N_CHANNELS).zip($data.iter()) {
let plte_offset = PLTE_CHANNELS * idx as usize;
if palette.len() >= plte_offset + PLTE_CHANNELS {
let colors = &palette[plte_offset..];
rgba[0] = colors[0];
rgba[1] = colors[1];
rgba[2] = colors[2];
rgba[3] = if let Some(t) = transparent {
if t == idx { 0x00 } else { 0xFF }
} else {
0xFF
}
}
}
(len, N_CHANNELS)
},
Indexed => {
let len = cmp::min(buf.len(), $data.len());
buf[..len].copy_from_slice(&$data[..len]);
(len, 1)
}
}
}
);
let buf_len = self.buffer.len();
if buf_len > 0 {
let (len, channels) = handle_data!(&self.buffer);
let _ = self.buffer.drain(..len);
buf = &mut buf[len*channels..];
if buf.len() == 0 {
return Ok(true)
}
}
loop {
match self.decoder.decode_next()? {
Some(Decoded::Data(data)) => {
let (len, channels) = handle_data!(data);
buf = &mut buf[len*channels..]; // shorten buf
if buf.len() > 0 {
continue
} else if len < data.len() {
self.buffer.extend_from_slice(&data[len..]);
}
return Ok(true)
},
Some(_) => return Ok(false), // make sure that no important result is missed
None => return Ok(false)
}
}
}
/// Output buffer size
pub fn buffer_size(&self) -> usize {
self.line_length() * self.current_frame.height as usize
}
/// Line length of the current frame
pub fn line_length(&self) -> usize {
use self::ColorOutput::*;
match self.color_output {
RGBA => self.current_frame.width as usize * N_CHANNELS,
Indexed => self.current_frame.width as usize
}
}
/// Returns the color palette relevant for the current (next) frame
pub fn palette(&self) -> Result<&[u8], DecodingError> {
// TODO prevent planic
Ok(match self.current_frame.palette {
Some(ref table) => &*table,
None => &*self.global_palette.as_ref().ok_or(DecodingError::format(
"no color table available for current frame"
))?,
})
}
/// The global color palette
pub fn global_palette(&self) -> Option<&[u8]> {
self.global_palette.as_ref().map(|v| &**v)
}
/// Width of the image
pub fn width(&self) -> u16 {
self.decoder.decoder.width()
}
/// Height of the image
pub fn height(&self) -> u16 {
self.decoder.decoder.height()
}
/// Index of the background color in the global palette
pub fn bg_color(&self) -> Option<usize> {
self.bg_color.map(|v| v as usize)
}
}
struct InterlaceIterator {
len: usize,
next: usize,
pass: usize
}
impl iter::Iterator for InterlaceIterator {
type Item = usize;
fn next(&mut self) -> Option<Self::Item> {
if self.len == 0 || self.pass > 3 {
return None
}
let mut next = self.next + [8, 8, 4, 2][self.pass];
while next >= self.len {
next = [4, 2, 1, 0][self.pass];
self.pass += 1;
}
mem::swap(&mut next, &mut self.next);
Some(next)
}
}
#[cfg(test)]
mod test {
use std::fs::File;
use super::{Decoder, InterlaceIterator};
#[test]
fn test_simple_indexed() {
let mut decoder = Decoder::new(File::open("tests/samples/sample_1.gif").unwrap()).unwrap();
let frame = decoder.read_next_frame().unwrap().unwrap();
assert_eq!(&*frame.buffer, &[
1, 1, 1, 1, 1, 2, 2, 2, 2, 2,
1, 1, 1, 1, 1, 2, 2, 2, 2, 2,
1, 1, 1, 1, 1, 2, 2, 2, 2, 2,
1, 1, 1, 0, 0, 0, 0, 2, 2, 2,
1, 1, 1, 0, 0, 0, 0, 2, 2, 2,
2, 2, 2, 0, 0, 0, 0, 1, 1, 1,
2, 2, 2, 0, 0, 0, 0, 1, 1, 1,
2, 2, 2, 2, 2, 1, 1, 1, 1, 1,
2, 2, 2, 2, 2, 1, 1, 1, 1, 1,
2, 2, 2, 2, 2, 1, 1, 1, 1, 1
][..])
}
#[test]
fn test_interlace_iterator() {
for &(len, expect) in &[
(0, &[][..]),
(1, &[0][..]),
(2, &[0, 1][..]),
(3, &[0, 2, 1][..]),
(4, &[0, 2, 1, 3][..]),
(5, &[0, 4, 2, 1, 3][..]),
(6, &[0, 4, 2, 1, 3, 5][..]),
(7, &[0, 4, 2, 6, 1, 3, 5][..]),
(8, &[0, 4, 2, 6, 1, 3, 5, 7][..]),
(9, &[0, 8, 4, 2, 6, 1, 3, 5, 7][..]),
(10, &[0, 8, 4, 2, 6, 1, 3, 5, 7, 9][..]),
(11, &[0, 8, 4, 2, 6, 10, 1, 3, 5, 7, 9][..]),
(12, &[0, 8, 4, 2, 6, 10, 1, 3, 5, 7, 9, 11][..]),
(13, &[0, 8, 4, 12, 2, 6, 10, 1, 3, 5, 7, 9, 11][..]),
(14, &[0, 8, 4, 12, 2, 6, 10, 1, 3, 5, 7, 9, 11, 13][..]),
(15, &[0, 8, 4, 12, 2, 6, 10, 14, 1, 3, 5, 7, 9, 11, 13][..]),
(16, &[0, 8, 4, 12, 2, 6, 10, 14, 1, 3, 5, 7, 9, 11, 13, 15][..]),
(17, &[0, 8, 16, 4, 12, 2, 6, 10, 14, 1, 3, 5, 7, 9, 11, 13, 15][..]),
] {
let iter = InterlaceIterator { len: len, next: 0, pass: 0 };
let lines = iter.collect::<Vec<_>>();
assert_eq!(lines, expect);
}
}
}