1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
use std::borrow::Cow;
use std::io;
use std::cmp;
use std::mem;
use std::iter;
use std::io::prelude::*;

use crate::common::{Block, Frame};

mod decoder;
pub use self::decoder::{
    PLTE_CHANNELS, StreamingDecoder, Decoded, DecodingError, DecodingFormatError, Extensions,
    Version
};

const N_CHANNELS: usize = 4;

/// Output mode for the image data
#[derive(Clone, Copy, Debug, PartialEq)]
#[repr(u8)]
pub enum ColorOutput {
    /// The decoder expands the image data to 32bit RGBA.
    /// This affects:
    ///
    ///  - The buffer buffer of the `Frame` returned by `Decoder::read_next_frame`.
    ///  - `Decoder::fill_buffer`, `Decoder::buffer_size` and `Decoder::line_length`.
    RGBA = 0,
    /// The decoder returns the raw indexed data.
    Indexed = 1,
}

#[derive(Clone, Debug)]
/// Memory limit in bytes. `MemoryLimit(0)` means
/// that there is no memory limit set.
pub struct MemoryLimit(pub u32);

impl MemoryLimit {
    /// Enforce no memory limit.
    ///
    /// If you intend to process images from unknown origins this is a potentially dangerous
    /// constant to use, as your program could be vulnerable to decompression bombs. That is,
    /// malicious images crafted specifically to require an enormous amount of memory to process
    /// while having a disproportionately small file size.
    ///
    /// The risks for modern machines are a bit smaller as the dimensions of each frame can not
    /// exceed `u32::MAX` (~4Gb) but this is still a significant amount of memory.
    pub const NONE: MemoryLimit = MemoryLimit(0);

    fn buffer_size(&self, color: ColorOutput, width: u16, height: u16) -> Option<usize> {
        let pixels = u32::from(width) * u32::from(height);

        let bytes_per_pixel = match color {
            ColorOutput::Indexed => 1,
            ColorOutput::RGBA => 4,
        };

        if self.0 > 0 && pixels > self.0 / bytes_per_pixel {
            None
        } else {
            Some(pixels as usize * bytes_per_pixel as usize)
        }
    }
}

/// Options for opening a GIF decoder.
#[derive(Clone, Debug)]
pub struct DecodeOptions {
    memory_limit: MemoryLimit,
    color_output: ColorOutput,
    check_frame_consistency: bool,
    check_for_end_code: bool,
    allow_unknown_blocks: bool,
}

impl DecodeOptions {
    /// Creates a new decoder builder
    pub fn new() -> DecodeOptions {
        DecodeOptions {
            memory_limit: MemoryLimit(50_000_000), // 50 MB
            color_output: ColorOutput::Indexed,
            check_frame_consistency: false,
            check_for_end_code: false,
            allow_unknown_blocks: false,
        }
    }

    /// Configure how color data is decoded.
    pub fn set_color_output(&mut self, color: ColorOutput) {
        self.color_output = color;
    }

    /// Configure a memory limit for decoding.
    pub fn set_memory_limit(&mut self, limit: MemoryLimit) {
        self.memory_limit = limit;
    }

    /// Configure if frames must be within the screen descriptor.
    ///
    /// The default is `false`.
    ///
    /// When turned on, all frame descriptors being read must fit within the screen descriptor or
    /// otherwise an error is returned and the stream left in an unspecified state.
    ///
    /// When turned off, frames may be arbitrarily larger or offset in relation to the screen. Many
    /// other decoder libraries handle this in highly divergent ways. This moves all checks to the
    /// caller, for example to emulate a specific style.
    pub fn check_frame_consistency(&mut self, check: bool) {
        self.check_frame_consistency = check;
    }

    /// Configure if LZW encoded blocks must end with a marker end code.
    ///
    /// The default is `false`.
    ///
    /// When turned on, all image data blocks—which are LZW encoded—must contain a special bit
    /// sequence signalling the end of the data. LZW processing terminates when this code is
    /// encountered. The specification states that it must be the last code output by the encoder
    /// for an image.
    ///
    /// When turned off then image data blocks can simply end. Note that this might silently ignore
    /// some bits of the last or second to last byte.
    pub fn check_lzw_end_code(&mut self, check: bool) {
        self.check_for_end_code = check;
    }

    /// Configure if unknown blocks are allowed to be decoded.
    ///
    /// The default is `false`.
    ///
    /// When turned on, the decoder will allow unknown blocks to be in the
    /// `BlockStart` position.
    ///
    /// When turned off, decoded block starts must mark an `Image`, `Extension`,
    /// or `Trailer` block. Otherwise, the decoded image will return an error.
    /// If an unknown block error is returned from decoding, enabling this
    /// setting may allow for a further state of decoding on the next attempt.
    pub fn allow_unknown_blocks(&mut self, check: bool) {
        self.allow_unknown_blocks = check;
    }

    /// Reads the logical screen descriptor including the global color palette
    ///
    /// Returns a `Decoder`. All decoder configuration has to be done beforehand.
    pub fn read_info<R: Read>(self, r: R) -> Result<Decoder<R>, DecodingError> {
        Decoder::with_no_init(r, StreamingDecoder::with_options(&self), self).init()
    }
}

struct ReadDecoder<R: Read> {
    reader: io::BufReader<R>,
    decoder: StreamingDecoder,
    at_eof: bool
}

impl<R: Read> ReadDecoder<R> {
    fn decode_next(&mut self) -> Result<Option<Decoded>, DecodingError> {
        while !self.at_eof {
            let (consumed, result) = {
                let buf = self.reader.fill_buf()?;
                if buf.len() == 0 {
                    return Err(DecodingError::format(
                        "unexpected EOF"
                    ))
                }
                self.decoder.update(buf)?
            };
            self.reader.consume(consumed);
            match result {
                Decoded::Nothing => (),
                Decoded::BlockStart(Block::Trailer) => {
                    self.at_eof = true
                },
                result => return Ok(unsafe{
                    // FIXME: #6393
                    Some(mem::transmute::<Decoded, Decoded>(result))
                }),
            }
        }
        Ok(None)
    }
}

#[allow(dead_code)]
/// GIF decoder
pub struct Decoder<R: Read> {
    decoder: ReadDecoder<R>,
    color_output: ColorOutput,
    memory_limit: MemoryLimit,
    bg_color: Option<u8>,
    global_palette: Option<Vec<u8>>,
    current_frame: Frame<'static>,
    buffer: Vec<u8>,
}

impl<R> Decoder<R> where R: Read {
    /// Create a new decoder with default options.
    pub fn new(reader: R) -> Result<Self, DecodingError> {
        DecodeOptions::new().read_info(reader)
    }

    /// Return a builder that allows configuring limits etc.
    pub fn build() -> DecodeOptions {
        DecodeOptions::new()
    }

    fn with_no_init(reader: R, decoder: StreamingDecoder, options: DecodeOptions) -> Decoder<R> {
        Decoder {
            decoder: ReadDecoder {
                reader: io::BufReader::new(reader),
                decoder,
                at_eof: false
            },
            bg_color: None,
            global_palette: None,
            buffer: Vec::with_capacity(32),
            color_output: options.color_output,
            memory_limit: options.memory_limit,
            current_frame: Frame::default(),
        }
    }
    
    fn init(mut self) -> Result<Self, DecodingError> {
        loop {
            match self.decoder.decode_next()? {
                Some(Decoded::BackgroundColor(bg_color)) => {
                    self.bg_color = Some(bg_color)
                }
                Some(Decoded::GlobalPalette(palette)) => {
                    self.global_palette = if palette.len() > 0 {
                        Some(palette)
                    } else {
                        None
                    };
                    break
                },
                Some(_) => {
                    // Unreachable since this loop exists after the global
                    // palette has been read.
                    unreachable!()
                },
                None => return Err(DecodingError::format(
                    "file does not contain any image data"
                ))
            }
        }
        // If the background color is invalid, ignore it
        if let Some(ref palette) = self.global_palette {
            if self.bg_color.unwrap_or(0) as usize >= (palette.len() / PLTE_CHANNELS) {
                self.bg_color = None;
            }
        }
        Ok(self)
    }
    
    /// Returns the next frame info
    pub fn next_frame_info(&mut self) -> Result<Option<&Frame<'static>>, DecodingError> {
        if !self.buffer.is_empty() {
            // FIXME: Warn about discarding data?
            self.buffer.clear();
        }

        loop {
            match self.decoder.decode_next()? {
                Some(Decoded::Frame(frame)) => {
                    self.current_frame = frame.clone();
                    if frame.palette.is_none() && self.global_palette.is_none() {
                        return Err(DecodingError::format(
                            "no color table available for current frame"
                        ))
                    }
                    break
                },
                Some(_) => (),
                None => return Ok(None)
                
            }
        }
        Ok(Some(&self.current_frame))
    }

    /// Reads the next frame from the image.
    ///
    /// Do not call `Self::next_frame_info` beforehand.
    /// Deinterlaces the result.
    pub fn read_next_frame(&mut self) -> Result<Option<&Frame<'static>>, DecodingError> {
        if let Some(frame) = self.next_frame_info()? {
            let (width, height) = (frame.width, frame.height);
            let pixel_bytes = self.memory_limit
                .buffer_size(self.color_output, width, height)
                .ok_or_else(|| {
                    DecodingError::format("image is too large to decode")
                })?;

            debug_assert_eq!(
                pixel_bytes, self.buffer_size(),
                "Checked computation diverges from required buffer size"
            );

            let mut vec = vec![0; pixel_bytes];
            self.read_into_buffer(&mut vec)?;
            self.current_frame.buffer = Cow::Owned(vec);
            self.current_frame.interlaced = false;
            Ok(Some(&self.current_frame))
        } else {
            Ok(None)
        }
    }

    /// Reads the data of the current frame into a pre-allocated buffer.
    ///
    /// `Self::next_frame_info` needs to be called beforehand.
    /// The length of `buf` must be at least `Self::buffer_size`.
    /// Deinterlaces the result.
    pub fn read_into_buffer(&mut self, buf: &mut [u8]) -> Result<(), DecodingError> {
        if self.current_frame.interlaced {
            let width = self.line_length();
            let height = self.current_frame.height as usize;
            for row in (InterlaceIterator { len: height, next: 0, pass: 0 }) {
                if !self.fill_buffer(&mut buf[row*width..][..width])? {
                    return Err(DecodingError::format("image truncated"))
                }
            }
        } else {
            let buf = &mut buf[..self.buffer_size()];
            if !self.fill_buffer(buf)? {
                return Err(DecodingError::format("image truncated"))
            }
        };
        Ok(())
    }

    /// Reads data of the current frame into a pre-allocated buffer until the buffer has been
    /// filled completely.
    ///
    /// `Self::next_frame_info` needs to be called beforehand. Returns `true` if the supplied
    /// buffer could be filled completely. Should not be called after `false` had been returned.
    pub fn fill_buffer(&mut self, mut buf: &mut [u8]) -> Result<bool, DecodingError> {
        use self::ColorOutput::*;
        const PLTE_CHANNELS: usize = 3;
        macro_rules! handle_data(
            ($data:expr) => {
                match self.color_output {
                    RGBA => {
                        let transparent = self.current_frame.transparent;
                        let palette: &[u8] = match self.current_frame.palette {
                            Some(ref table) => &*table,
                            None => &*self.global_palette.as_ref().unwrap(),
                        };
                        let len = cmp::min(buf.len()/N_CHANNELS, $data.len());
                        for (rgba, &idx) in buf[..len*N_CHANNELS].chunks_mut(N_CHANNELS).zip($data.iter()) {
                            let plte_offset = PLTE_CHANNELS * idx as usize;
                            if palette.len() >= plte_offset + PLTE_CHANNELS {
                                let colors = &palette[plte_offset..];
                                rgba[0] = colors[0];
                                rgba[1] = colors[1];
                                rgba[2] = colors[2];
                                rgba[3] = if let Some(t) = transparent {
                                    if t == idx { 0x00 } else { 0xFF }
                                } else {
                                    0xFF
                                }
                            }
                        }
                        (len, N_CHANNELS)
                    },
                    Indexed => {
                        let len = cmp::min(buf.len(), $data.len());
                        buf[..len].copy_from_slice(&$data[..len]);
                        (len, 1)
                    }
                }
            }
        );
        let buf_len = self.buffer.len();
        if buf_len > 0 {
            let (len, channels) = handle_data!(&self.buffer);
            let _ = self.buffer.drain(..len);
            buf = &mut buf[len*channels..];
            if buf.len() == 0 {
                return Ok(true)
            }
        }
        loop {
            match self.decoder.decode_next()? {
                Some(Decoded::Data(data)) => {
                    let (len, channels) = handle_data!(data);
                    buf = &mut buf[len*channels..]; // shorten buf
                    if buf.len() > 0 {
                        continue
                    } else if len < data.len() {
                        self.buffer.extend_from_slice(&data[len..]);
                    }
                    return Ok(true)
                },
                Some(_) => return Ok(false), // make sure that no important result is missed
                None => return Ok(false)
                
            }
        }
    }
    
    /// Output buffer size
    pub fn buffer_size(&self) -> usize {
        self.line_length() * self.current_frame.height as usize
    }
    
    /// Line length of the current frame
    pub fn line_length(&self) -> usize {
        use self::ColorOutput::*;
        match self.color_output {
            RGBA => self.current_frame.width as usize * N_CHANNELS,
            Indexed => self.current_frame.width as usize
        }
    }
    
    /// Returns the color palette relevant for the current (next) frame
    pub fn palette(&self) -> Result<&[u8], DecodingError> {
        // TODO prevent planic
        Ok(match self.current_frame.palette {
            Some(ref table) => &*table,
            None => &*self.global_palette.as_ref().ok_or(DecodingError::format(
                "no color table available for current frame"
            ))?,
        })
    }
    
    /// The global color palette
    pub fn global_palette(&self) -> Option<&[u8]> {
        self.global_palette.as_ref().map(|v| &**v)
    }

    /// Width of the image
    pub fn width(&self) -> u16 {
        self.decoder.decoder.width()
    }

    /// Height of the image
    pub fn height(&self) -> u16 {
        self.decoder.decoder.height()
    }

    /// Index of the background color in the global palette
    pub fn bg_color(&self) -> Option<usize> {
        self.bg_color.map(|v| v as usize)
    }
}

struct InterlaceIterator {
    len: usize,
    next: usize,
    pass: usize
}

impl iter::Iterator for InterlaceIterator {
    type Item = usize;

    fn next(&mut self) -> Option<Self::Item> {
        if self.len == 0 || self.pass > 3 {
            return None
        }
        let mut next = self.next + [8, 8, 4, 2][self.pass];
        while next >= self.len {
            next = [4, 2, 1, 0][self.pass];
            self.pass += 1;
        }
        mem::swap(&mut next, &mut self.next);
        Some(next)
    }
}

#[cfg(test)]
mod test {
    use std::fs::File;

    use super::{Decoder, InterlaceIterator};
    
    #[test]
    fn test_simple_indexed() {
        let mut decoder = Decoder::new(File::open("tests/samples/sample_1.gif").unwrap()).unwrap();
        let frame = decoder.read_next_frame().unwrap().unwrap();
        assert_eq!(&*frame.buffer, &[
            1, 1, 1, 1, 1, 2, 2, 2, 2, 2,
            1, 1, 1, 1, 1, 2, 2, 2, 2, 2,
            1, 1, 1, 1, 1, 2, 2, 2, 2, 2,
            1, 1, 1, 0, 0, 0, 0, 2, 2, 2,
            1, 1, 1, 0, 0, 0, 0, 2, 2, 2,
            2, 2, 2, 0, 0, 0, 0, 1, 1, 1,
            2, 2, 2, 0, 0, 0, 0, 1, 1, 1,
            2, 2, 2, 2, 2, 1, 1, 1, 1, 1,
            2, 2, 2, 2, 2, 1, 1, 1, 1, 1,
            2, 2, 2, 2, 2, 1, 1, 1, 1, 1
        ][..])
    }

    #[test]
    fn test_interlace_iterator() {
        for &(len, expect) in &[
            (0, &[][..]),
            (1, &[0][..]),
            (2, &[0, 1][..]),
            (3, &[0, 2, 1][..]),
            (4, &[0, 2, 1, 3][..]),
            (5, &[0, 4, 2, 1, 3][..]),
            (6, &[0, 4, 2, 1, 3, 5][..]),
            (7, &[0, 4, 2, 6, 1, 3, 5][..]),
            (8, &[0, 4, 2, 6, 1, 3, 5, 7][..]),
            (9, &[0, 8, 4, 2, 6, 1, 3, 5, 7][..]),
            (10, &[0, 8, 4, 2, 6, 1, 3, 5, 7, 9][..]),
            (11, &[0, 8, 4, 2, 6, 10, 1, 3, 5, 7, 9][..]),
            (12, &[0, 8, 4, 2, 6, 10, 1, 3, 5, 7, 9, 11][..]),
            (13, &[0, 8, 4, 12, 2, 6, 10, 1, 3, 5, 7, 9, 11][..]),
            (14, &[0, 8, 4, 12, 2, 6, 10, 1, 3, 5, 7, 9, 11, 13][..]),
            (15, &[0, 8, 4, 12, 2, 6, 10, 14, 1, 3, 5, 7, 9, 11, 13][..]),
            (16, &[0, 8, 4, 12, 2, 6, 10, 14, 1, 3, 5, 7, 9, 11, 13, 15][..]),
            (17, &[0, 8, 16, 4, 12, 2, 6, 10, 14, 1, 3, 5, 7, 9, 11, 13, 15][..]),
        ] {
            let iter = InterlaceIterator { len: len, next: 0, pass: 0 };
            let lines = iter.collect::<Vec<_>>();
            assert_eq!(lines, expect);
        }
    }
}