1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
//! The abstract **Material** class defines the interface that
//! material implementations must provide.

//std
use std::cell::Cell;
use std::sync::Arc;
// pbrt
use crate::core::geometry::vec3_cross_vec3;
use crate::core::geometry::{Normal3f, Vector2f, Vector3f};
use crate::core::interaction::SurfaceInteraction;
use crate::core::pbrt::{Float, Spectrum};
use crate::core::texture::Texture;
use crate::materials::disney::DisneyMaterial;
use crate::materials::fourier::FourierMaterial;
use crate::materials::glass::GlassMaterial;
use crate::materials::hair::HairMaterial;
use crate::materials::matte::MatteMaterial;
use crate::materials::metal::MetalMaterial;
use crate::materials::mirror::MirrorMaterial;
use crate::materials::mixmat::MixMaterial;
use crate::materials::plastic::PlasticMaterial;
use crate::materials::substrate::SubstrateMaterial;
use crate::materials::subsurface::SubsurfaceMaterial;
use crate::materials::translucent::TranslucentMaterial;
use crate::materials::uber::UberMaterial;

// see material.h

/// Is used to inform non-symetric BSDFs about the transported
/// quantity so that they can correctly switch between the adjoint and
/// non-adjoint forms.
#[derive(Debug, Clone, Copy, PartialEq)]
pub enum TransportMode {
    Radiance,
    Importance,
}

pub enum Material {
    Disney(Box<DisneyMaterial>),
    Fourier(Box<FourierMaterial>),
    Glass(Box<GlassMaterial>),
    Hair(Box<HairMaterial>),
    Matte(Box<MatteMaterial>),
    Metal(Box<MetalMaterial>),
    Mirror(Box<MirrorMaterial>),
    Mix(Box<MixMaterial>),
    Plastic(Box<PlasticMaterial>),
    Substrate(Box<SubstrateMaterial>),
    Subsurface(Box<SubsurfaceMaterial>),
    Translucent(Box<TranslucentMaterial>),
    Uber(Box<UberMaterial>),
}

/// **Material** defines the interface that material implementations
/// must provide.
impl Material {
    /// The method is given a **SurfaceInteraction** object that
    /// contains geometric properties at an intersection point on the
    /// surface of a shape and is responsible for determining the
    /// reflective properties at the point and initializing some
    /// member variables.
    pub fn compute_scattering_functions(
        &self,
        si: &mut SurfaceInteraction,
        // arena: &mut Arena,
        mode: TransportMode,
        allow_multiple_lobes: bool,
        mat: Option<Arc<Material>>,
        scale: Option<Spectrum>,
    ) {
        match self {
            Material::Disney(material) => {
                material.compute_scattering_functions(si, mode, allow_multiple_lobes, mat, scale)
            }
            Material::Fourier(material) => {
                material.compute_scattering_functions(si, mode, allow_multiple_lobes, mat, scale)
            }
            Material::Glass(material) => {
                material.compute_scattering_functions(si, mode, allow_multiple_lobes, mat, scale)
            }
            Material::Hair(material) => {
                material.compute_scattering_functions(si, mode, allow_multiple_lobes, mat, scale)
            }
            Material::Matte(material) => {
                material.compute_scattering_functions(si, mode, allow_multiple_lobes, mat, scale)
            }
            Material::Metal(material) => {
                material.compute_scattering_functions(si, mode, allow_multiple_lobes, mat, scale)
            }
            Material::Mirror(material) => {
                material.compute_scattering_functions(si, mode, allow_multiple_lobes, mat, scale)
            }
            Material::Mix(material) => {
                material.compute_scattering_functions(si, mode, allow_multiple_lobes, mat, scale)
            }
            Material::Plastic(material) => {
                material.compute_scattering_functions(si, mode, allow_multiple_lobes, mat, scale)
            }
            Material::Substrate(material) => {
                material.compute_scattering_functions(si, mode, allow_multiple_lobes, mat, scale)
            }
            Material::Subsurface(material) => {
                material.compute_scattering_functions(si, mode, allow_multiple_lobes, mat, scale)
            }
            Material::Translucent(material) => {
                material.compute_scattering_functions(si, mode, allow_multiple_lobes, mat, scale)
            }
            Material::Uber(material) => {
                material.compute_scattering_functions(si, mode, allow_multiple_lobes, mat, scale)
            }
        }
    }
    /// Computing the effect of bump mapping at the point being shaded
    /// given a particular displacement texture.
    pub fn bump(d: &Arc<dyn Texture<Float> + Send + Sync>, si: &mut SurfaceInteraction)
    where
        Self: Sized,
    {
        // compute offset positions and evaluate displacement texture
        let mut si_eval: SurfaceInteraction = SurfaceInteraction::default();
        si_eval.common.p = si.common.p;
        si_eval.common.time = si.common.time;
        si_eval.common.p_error = si.common.p_error;
        si_eval.common.wo = si.common.wo;
        si_eval.common.n = si.common.n;
        if let Some(ref medium_interface) = si.common.medium_interface {
            si_eval.common.medium_interface = Some(medium_interface.clone());
        } else {
            si_eval.common.medium_interface = None;
        }
        si_eval.uv = si.uv;
        si_eval.dpdu = si.dpdu;
        si_eval.dpdv = si.dpdv;
        si_eval.dndu = si.dndu;
        si_eval.dndv = si.dndv;
        si_eval.dudx = Cell::new(si.dudx.get());
        si_eval.dvdx = Cell::new(si.dvdx.get());
        si_eval.dudy = Cell::new(si.dudy.get());
        si_eval.dvdy = Cell::new(si.dvdy.get());
        si_eval.dpdx = Cell::new(si.dpdx.get());
        si_eval.dpdy = Cell::new(si.dpdy.get());
        if let Some(primitive) = &si.primitive {
            Arc::new(*primitive);
        } else {
            si_eval.primitive = None
        }
        si_eval.shading.n = si.shading.n;
        si_eval.shading.dpdu = si.shading.dpdu;
        si_eval.shading.dpdv = si.shading.dpdv;
        si_eval.shading.dndu = si.shading.dndu;
        si_eval.shading.dndv = si.shading.dndv;
        if let Some(bsdf) = &si.bsdf {
            Arc::new(bsdf.clone());
        } else {
            si_eval.bsdf = None
        }
        // if let Some(bssrdf) = &si.bssrdf {
        //     Some(Arc::new(bssrdf.clone()));
        // } else {
        //     si_eval.bssrdf = None
        // }
        if let Some(shape) = &si.shape {
            Arc::new(shape);
        } else {
            si_eval.shape = None
        }
        // shift _si_eval_ _du_ in the $u$ direction
        let mut du: Float = 0.5 as Float * (si.dudx.get().abs() + si.dudy.get().abs());
        // The most common reason for du to be zero is for ray that start from
        // light sources, where no differentials are available. In this case,
        // we try to choose a small enough du so that we still get a decently
        // accurate bump value.
        if du == 0.0 as Float {
            du = 0.0005 as Float;
        }
        {
            si_eval.common.p = si.common.p + si.shading.dpdu * du;
            si_eval.uv = si.uv
                + Vector2f {
                    x: du,
                    y: 0.0 as Float,
                };
            si_eval.common.n =
                (Normal3f::from(vec3_cross_vec3(&si.shading.dpdu, &si.shading.dpdv))
                    + si.dndu * du)
                    .normalize();
        }
        let u_displace: Float = d.evaluate(&si_eval);
        // shift _si_eval_ _dv_ in the $v$ direction
        let mut dv: Float = 0.5 as Float * (si.dvdx.get().abs() + si.dvdy.get().abs());
        if dv == 00 as Float {
            dv = 0.0005 as Float;
        }
        {
            si_eval.common.p = si.common.p + si.shading.dpdv * dv;
            si_eval.uv = si.uv
                + Vector2f {
                    x: 0.0 as Float,
                    y: dv,
                };
            si_eval.common.n =
                (Normal3f::from(vec3_cross_vec3(&si.shading.dpdu, &si.shading.dpdv))
                    + si.dndv * dv)
                    .normalize();
        }
        let v_displace: Float = d.evaluate(&si_eval);
        let displace: Float = d.evaluate(si);
        // compute bump-mapped differential geometry
        let dpdu: Vector3f = si.shading.dpdu
            + Vector3f::from(si.shading.n) * ((u_displace - displace) / du)
            + Vector3f::from(si.shading.dndu) * displace;
        let dpdv: Vector3f = si.shading.dpdv
            + Vector3f::from(si.shading.n) * ((v_displace - displace) / dv)
            + Vector3f::from(si.shading.dndv) * displace;
        let dndu = si.shading.dndu;
        let dndv = si.shading.dndv;
        si.set_shading_geometry(&dpdu, &dpdv, &dndu, &dndv, false);
    }
}