1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898
// std
use std::f32::consts::PI;
use std::sync::Arc;
// others
use atom::*;
use atomic::{Atomic, Ordering};
use strum::IntoEnumIterator;
// pbrt
use crate::blockqueue::BlockQueue;
use crate::core::camera::{Camera, CameraSample};
use crate::core::film::Film;
use crate::core::geometry::{
bnd3_expand, bnd3_union_bnd3f, nrm_abs_dot_vec3f, pnt3_distance_squaredf, vec3_abs_dot_nrmf,
vec3_max_componentf,
};
use crate::core::geometry::{
Bounds2i, Bounds3f, Normal3f, Point2f, Point2i, Point3f, Point3i, Ray, Vector2i, Vector3f,
XYZEnum,
};
use crate::core::integrator::{compute_light_power_distribution, uniform_sample_one_light};
use crate::core::interaction::{Interaction, SurfaceInteraction};
use crate::core::lowdiscrepancy::radical_inverse;
use crate::core::material::TransportMode;
use crate::core::parallel::AtomicFloat;
use crate::core::pbrt::{clamp_t, lerp};
use crate::core::pbrt::{Float, Spectrum};
use crate::core::reflection::{Bsdf, BxdfType};
use crate::core::scene::Scene;
use crate::core::spectrum::RGBEnum;
use crate::samplers::halton::HaltonSampler;
/// Stochastic Progressive Photon Mapping
pub struct SPPMIntegrator {
pub camera: Arc<Camera>,
pub initial_search_radius: Float,
pub n_iterations: i32,
pub max_depth: u32,
pub photons_per_iteration: i32,
pub write_frequency: i32,
}
impl SPPMIntegrator {
pub fn new(
camera: Arc<Camera>,
n_iterations: i32,
photons_per_iteration: i32,
max_depth: u32,
initial_search_radius: Float,
write_frequency: i32,
) -> Self {
let photons_per_iteration = if photons_per_iteration <= 0_i32 {
let film: Arc<Film> = camera.get_film();
film.cropped_pixel_bounds.area()
} else {
photons_per_iteration
};
SPPMIntegrator {
camera,
initial_search_radius,
n_iterations,
max_depth,
photons_per_iteration,
write_frequency,
}
}
pub fn render(&self, scene: &Scene, num_threads: u8) {
let num_cores = if num_threads == 0_u8 {
num_cpus::get()
} else {
num_threads as usize
};
println!("Rendering with {:?} thread(s) ...", num_cores);
// TODO: ProfilePhase p(Prof::IntegratorRender);
// initialize _pixel_bounds_ and _pixels_ array for SPPM
let film: Arc<Film> = self.get_camera().get_film();
let pixel_bounds: Bounds2i = film.cropped_pixel_bounds;
let n_pixels: i32 = pixel_bounds.area();
let mut pixels: Vec<SPPMPixel> = Vec::with_capacity(n_pixels as usize);
for _i in 0..n_pixels as usize {
let mut pixel = SPPMPixel::default();
pixel.radius = self.initial_search_radius;
pixels.push(pixel);
}
let inv_sqrt_spp: Float = 1.0 as Float / (self.n_iterations as Float).sqrt();
// TODO: let pixel_memory_bytes: usize = n_pixels as usize * std::mem::size_of::<SPPMPixel>();
// compute _light_distr_ for sampling lights proportional to power
if let Some(light_distr) = compute_light_power_distribution(scene) {
// perform _n_iterations_ of SPPM integration
let sampler: Box<HaltonSampler> = Box::new(HaltonSampler::new(
self.n_iterations as i64,
&pixel_bounds,
false,
));
// compute number of tiles to use for SPPM camera pass
let pixel_extent: Vector2i = pixel_bounds.diagonal();
let tile_size: i32 = 16;
let n_tiles: Point2i = Point2i {
x: (pixel_extent.x + tile_size - 1) / tile_size,
y: (pixel_extent.y + tile_size - 1) / tile_size,
};
// TODO: ProgressReporter progress(2 * nIterations, "Rendering");
for iteration in pbr::PbIter::new(0..self.n_iterations) {
// generate SPPM visible points
{
// TODO: ProfilePhase _(Prof::SPPMCameraPass);
// println!("Generate SPPM visible points ...");
{
let block_queue = BlockQueue::new(
(
(n_tiles.x * tile_size) as u32,
(n_tiles.y * tile_size) as u32,
),
(tile_size as u32, tile_size as u32),
(0, 0),
);
let integrator = &self;
let bq = &block_queue;
let sampler = &sampler;
let pixels = &mut pixels;
crossbeam::scope(|scope| {
let (pixel_tx, pixel_rx) = crossbeam_channel::bounded(num_cores);
// spawn worker threads
for _ in 0..num_cores {
let pixel_tx = pixel_tx.clone();
scope.spawn(move |_| {
while let Some((x, y)) = bq.next() {
let tile: Point2i = Point2i {
x: x as i32,
y: y as i32,
};
let mut tile_bq: Vec<(i32, Spectrum, VisiblePoint)> =
Vec::new();
// TODO: MemoryArena &arena = perThreadArenas[ThreadIndex];
// follow camera paths for _tile_ in image for SPPM
// TODO: let tile_index: i32 = tile.y * n_tiles.x + tile.x;
let mut tile_sampler = sampler.clone_with_seed(0_u64);
// compute _tileBounds_ for SPPM tile
let x0: i32 = pixel_bounds.p_min.x + tile.x * tile_size;
let x1: i32 =
std::cmp::min(x0 + tile_size, pixel_bounds.p_max.x);
let y0: i32 = pixel_bounds.p_min.y + tile.y * tile_size;
let y1: i32 =
std::cmp::min(y0 + tile_size, pixel_bounds.p_max.y);
let tile_bounds: Bounds2i = Bounds2i::new(
Point2i { x: x0, y: y0 },
Point2i { x: x1, y: y1 },
);
for p_pixel in &tile_bounds {
// prepare _tileSampler_ for _p_pixel_
tile_sampler.start_pixel(p_pixel);
tile_sampler.set_sample_number(iteration as i64);
// generate camera ray for pixel for SPPM
let camera_sample: CameraSample =
tile_sampler.get_camera_sample(p_pixel);
let mut ray: Ray = Ray::default();
let mut beta: Spectrum = Spectrum::new(
self.get_camera().generate_ray_differential(
&camera_sample,
&mut ray,
),
);
if beta.is_black() {
continue;
}
ray.scale_differentials(inv_sqrt_spp);
// follow camera ray path until a visible point is created
// get _SPPMPixel_ for _p_pixel_
let p_pixel_o: Point2i =
Point2i::from(p_pixel - pixel_bounds.p_min);
let pixel_offset: i32 = p_pixel_o.x
+ p_pixel_o.y
* (pixel_bounds.p_max.x - pixel_bounds.p_min.x);
// let mut pixel = &mut pixels[pixel_offset as usize];
let mut pixel = (
pixel_offset,
Spectrum::default(),
VisiblePoint::default(),
);
let mut specular_bounce: bool = false;
for depth in 0..integrator.max_depth {
// TODO: ++totalPhotonSurfaceInteractions;
let mut isect: SurfaceInteraction =
SurfaceInteraction::default();
if scene.intersect(&mut ray, &mut isect) {
// process SPPM camera ray intersection
// compute BSDF at SPPM camera ray intersection
let mode: TransportMode =
TransportMode::Radiance;
isect.compute_scattering_functions(
&ray, true, mode,
);
if let Some(bsdf) = &isect.bsdf {
// accumulate direct illumination
// at SPPM camera ray intersection
let wo: Vector3f = -ray.d;
if depth == 0 || specular_bounce {
pixel.1 += beta * isect.le(&wo);
}
let it: &SurfaceInteraction = &isect;
pixel.1 += beta
* uniform_sample_one_light(
it,
scene,
&mut tile_sampler,
false,
None,
);
// possibly create visible point and end camera path
let mut bsdf_flags: u8 =
BxdfType::BsdfDiffuse as u8
| BxdfType::BsdfReflection as u8
| BxdfType::BsdfTransmission as u8;
let is_diffuse: bool =
bsdf.num_components(bsdf_flags) > 0;
bsdf_flags = BxdfType::BsdfGlossy as u8
| BxdfType::BsdfReflection as u8
| BxdfType::BsdfTransmission as u8;
let is_glossy: bool =
bsdf.num_components(bsdf_flags) > 0;
if is_diffuse
|| (is_glossy
&& depth
== integrator.max_depth - 1)
{
pixel.2.p = isect.common.p;
pixel.2.wo = wo;
pixel.2.bsdf = Some(bsdf.clone());
pixel.2.beta = beta;
break;
}
// spawn ray from SPPM camera path vertex
if depth < integrator.max_depth - 1 {
let mut wi: Vector3f =
Vector3f::default();
let mut pdf: Float = 0.0;
let bsdf_flags: u8 =
BxdfType::BsdfAll as u8;
let mut sampled_type: u8 =
u8::max_value(); // != 0
let f: Spectrum = bsdf.sample_f(
&wo,
&mut wi,
&tile_sampler.get_2d(),
&mut pdf,
bsdf_flags,
&mut sampled_type,
);
if pdf == 0.0 as Float || f.is_black() {
break;
}
specular_bounce = sampled_type
& (BxdfType::BsdfSpecular as u8)
!= 0_u8;
beta *= f * vec3_abs_dot_nrmf(
&wi,
&isect.shading.n,
) / pdf;
if beta.y() < 0.25 as Float {
let continue_prob: Float =
(1.0 as Float).min(beta.y());
if tile_sampler.get_1d()
> continue_prob
{
break;
}
beta /= continue_prob;
}
ray = isect.spawn_ray(&wi);
}
} else {
ray = isect.spawn_ray(&ray.d);
// --depth;
continue;
}
} else {
// accumulate light contributions for
// ray with no intersection
for light in &scene.lights {
pixel.1 += beta * light.le(&mut ray);
}
break;
}
}
tile_bq.push(pixel);
}
// send progress through the channel to main thread
pixel_tx
.send(tile_bq)
.unwrap_or_else(|_| panic!("Failed to send progress"));
}
});
}
// spawn thread to collect
scope.spawn(move |_| {
for _ in 0..bq.len() {
let tile = pixel_rx.recv().unwrap();
for (pixel_offset, ld, vp) in tile {
let pixel = &mut pixels[pixel_offset as usize];
pixel.ld += ld;
pixel.vp.p = vp.p;
pixel.vp.wo = vp.wo;
pixel.vp.bsdf = vp.bsdf;
pixel.vp.beta = vp.beta;
}
}
});
})
.unwrap();
}
}
// create grid of all SPPM visible points
let mut grid_res: [i32; 3] = [0; 3];
let mut grid_bounds: Bounds3f = Bounds3f::default();
// allocate grid for SPPM visible points
let hash_size: usize = n_pixels as usize;
let mut grid: Vec<Atom<Arc<SPPMPixelListNode>>> = Vec::with_capacity(hash_size);
{
let mut grid_once: Vec<AtomSetOnce<Arc<SPPMPixelListNode>>> =
Vec::with_capacity(hash_size);
for _i in 0..hash_size {
grid.push(Atom::empty());
grid_once.push(AtomSetOnce::empty());
}
{
// TODO: ProfilePhase _(Prof::SPPMGridConstruction);
// compute grid bounds for SPPM visible points
let mut max_radius: Float = 0.0 as Float;
// println!("Compute grid bounds for SPPM visible points ...");
for pixel in pixels.iter().take(n_pixels as usize) {
if !pixel.vp.beta.is_black() {
let vp_bound: Bounds3f = bnd3_expand(
&Bounds3f {
p_min: pixel.vp.p,
p_max: pixel.vp.p,
},
pixel.radius,
);
grid_bounds = bnd3_union_bnd3f(&grid_bounds, &vp_bound);
max_radius = max_radius.max(pixel.radius);
}
}
// compute resolution of SPPM grid in each dimension
let diag: Vector3f = grid_bounds.diagonal();
let max_diag: Float = vec3_max_componentf(&diag);
let base_grid_res: i32 = (max_diag / max_radius).floor() as i32;
assert!(base_grid_res > 0_i32);
for i in XYZEnum::iter() {
grid_res[i as usize] =
((base_grid_res as Float * diag[i] / max_diag).floor() as i32)
.max(1);
}
// add visible points to SPPM grid
// println!("Add visible points to SPPM grid ...");
let chunk_size: usize = (n_pixels / num_cores as i32) as usize;
{
let bands: Vec<&mut [SPPMPixel]> =
pixels.chunks_mut(chunk_size).collect();
let grid = &grid;
crossbeam::scope(|scope| {
let (band_tx, band_rx) = crossbeam_channel::bounded(num_cores);
// spawn worker threads
for (b, band) in bands.into_iter().enumerate() {
let band_tx = band_tx.clone();
scope.spawn(move |_| {
for pixel in band.iter_mut() {
// for pixel_index in 0..n_pixels as usize {
// let pixel = &pixels[pixel_index];
if !pixel.vp.beta.is_black() {
// add pixel's visible point to applicable grid cells
let radius: Float = pixel.radius;
let mut p_min: Point3i = Point3i::default();
let mut p_max: Point3i = Point3i::default();
to_grid(
&(pixel.vp.p
- Vector3f {
x: radius,
y: radius,
z: radius,
}),
&grid_bounds,
&grid_res,
&mut p_min,
);
to_grid(
&(pixel.vp.p
+ Vector3f {
x: radius,
y: radius,
z: radius,
}),
&grid_bounds,
&grid_res,
&mut p_max,
);
for z in p_min.z..=p_max.z {
for y in p_min.y..=p_max.y {
for x in p_min.x..=p_max.x {
// add visible point to grid cell $(x, y, z)$
let h: usize = hash(
&Point3i { x, y, z },
hash_size as i32,
);
let node_arc = Arc::new(
SPPMPixelListNode::new(pixel),
);
let old_opt = grid[h].swap(
node_arc.clone(),
Ordering::AcqRel,
);
if let Some(old) = old_opt {
node_arc.next.set_if_none(
old,
Ordering::Release,
);
}
}
}
}
// ReportValue(grid_cells_per_visible_point,
// (1 + pMax.x - pMin.x) * (1 + pMax.y - pMin.y) *
// (1 + pMax.z - pMin.z));
}
}
});
// send progress through the channel to main thread
band_tx
.send(b)
.unwrap_or_else(|_| panic!("Failed to send progress"));
}
// spawn thread to report progress
scope.spawn(move |_| {
for _ in 0..num_cores {
band_rx.recv().unwrap();
}
});
})
.unwrap();
}
}
// trace photons and accumulate contributions
for h in 0..hash_size {
// take
let opt = grid[h].take(Ordering::Acquire);
if let Some(p) = opt {
grid_once[h].set_if_none(p, Ordering::Release);
}
}
std::mem::drop(grid);
{
// TODO: ProfilePhase _(Prof::SPPMPhotonPass);
// println!("Trace photons and accumulate contributions ...");
let chunk_size: usize =
(self.photons_per_iteration / num_cores as i32) as usize;
{
let photons_vec: Vec<i32> = (0..self.photons_per_iteration).collect();
let bands: Vec<&[i32]> = photons_vec.chunks(chunk_size).collect();
let grid_once = &grid_once;
let integrator = &self;
let light_distr = &light_distr;
crossbeam::scope(|scope| {
let (band_tx, band_rx) = crossbeam_channel::bounded(num_cores);
// spawn worker threads
for (b, band) in bands.into_iter().enumerate() {
let band_tx = band_tx.clone();
scope.spawn(move |_| {
for photon_index in band.iter() {
// for photon_index in 0..integrator.photons_per_iteration as usize {
// MemoryArena &arena = photonShootArenas[ThreadIndex];
// follow photon path for _photon_index_
let halton_index: u64 = iteration as u64
* integrator.photons_per_iteration as u64
+ *photon_index as u64;
let mut halton_dim: i32 = 0;
// choose light to shoot photon from
let mut light_pdf_opt: Option<Float> = Some(0.0 as Float);
let light_sample: Float =
radical_inverse(halton_dim as u16, halton_index);
halton_dim += 1;
let light_num: usize = light_distr
.sample_discrete(light_sample, light_pdf_opt.as_mut());
if let Some(light_pdf) = light_pdf_opt {
let light = &scene.lights[light_num];
// compute sample values for photon ray leaving light source
let u_light_0: Point2f = Point2f {
x: radical_inverse(halton_dim as u16, halton_index),
y: radical_inverse(
(halton_dim + 1) as u16,
halton_index,
),
};
let u_light_1: Point2f = Point2f {
x: radical_inverse(
(halton_dim + 2) as u16,
halton_index,
),
y: radical_inverse(
(halton_dim + 3) as u16,
halton_index,
),
};
let u_light_time: Float = lerp(
radical_inverse((halton_dim + 4) as u16, halton_index),
self.get_camera().get_shutter_open(),
self.get_camera().get_shutter_close(),
);
halton_dim += 5;
// generate _photon_ray_ from light source and initialize _beta_
// RayDifferential photon_ray;
let mut photon_ray: Ray = Ray::default();
let mut n_light: Normal3f = Normal3f::default();
// Float pdf_pos, pdf_dir;
let mut pdf_pos: Float = 0.0;
let mut pdf_dir: Float = 0.0;
let le: Spectrum = light.sample_le(
u_light_0,
u_light_1,
u_light_time,
&mut photon_ray,
&mut n_light,
&mut pdf_pos,
&mut pdf_dir,
);
if pdf_pos == 0.0 as Float
|| pdf_dir == 0.0 as Float
|| le.is_black()
{
// println!(
// "light[{}]: pdf_pos = {}, pdf_dir = {}, le = {:?}",
// light_num, pdf_pos, pdf_dir, le
// );
// C++: return; (from ParallelFor(...{}, photonsPerIteration, 8192);)
break;
}
let mut beta: Spectrum = (le
* nrm_abs_dot_vec3f(&n_light, &photon_ray.d))
/ (light_pdf * pdf_pos * pdf_dir);
if beta.is_black() {
// println!("light[{}]: beta = {:?}", light_num, beta);
// C++: return; (from ParallelFor(...{}, photonsPerIteration, 8192);)
break;
}
// follow photon path through scene and record intersections
for depth in 0..integrator.max_depth {
let mut isect: SurfaceInteraction = SurfaceInteraction::default();
if scene.intersect(&mut photon_ray, &mut isect) {
// TODO: ++totalPhotonSurfaceInteractions;
if depth > 0 {
// add photon contribution to nearby visible points
let mut photon_grid_index: Point3i =
Point3i::default();
if to_grid(
&isect.common.p,
&grid_bounds,
&grid_res,
&mut photon_grid_index,
) {
let h: usize = hash(
&photon_grid_index,
hash_size as i32,
);
// add photon contribution to visible points in _grid[h]_
assert!(
h < hash_size,
"hash({:?}, {:?})",
photon_grid_index,
hash_size
);
if !grid_once[h].is_none(Ordering::Relaxed) {
let mut opt =
grid_once[h].get(Ordering::Acquire);
while let Some(node) = opt {
// deal with linked list
let pixel = node.pixel;
let radius: Float = pixel.radius;
if pnt3_distance_squaredf(
&pixel.vp.p,
&isect.common.p,
) > radius * radius
{
// update opt
opt =
node.next.get(Ordering::Acquire);
} else {
// update
// _pixel_
// $\phi$
// and
// $m$
// for
// nearby
// photon
let wi: Vector3f =
-photon_ray.d;
if let Some(ref bsdf) =
pixel.vp.bsdf
{
let bsdf_flags: u8 =
BxdfType::BsdfAll
as u8;
let phi: Spectrum = beta
* bsdf.f(
&pixel.vp.wo,
&wi,
bsdf_flags,
);
for i in 0..3 {
let rgb_i: RGBEnum =
match i {
0 =>
RGBEnum::Red,
1 =>
RGBEnum::Green,
_ =>
RGBEnum::Blue,
};
let phi_i: Float = phi[rgb_i];
pixel.phi[i]
.add(phi_i);
}
pixel.m.fetch_add(
1_i32,
atomic::Ordering::Relaxed,
);
}
// update opt
opt =
node.next.get(Ordering::Acquire);
}
}
}
}
}
// sample new photon ray direction
// compute BSDF at photon intersection point
let mode: TransportMode = TransportMode::Importance;
isect.compute_scattering_functions(&photon_ray, true, mode);
if let Some(ref photon_bsdf) = isect.bsdf {
// sample BSDF _fr_ and direction _wi_ for reflected photon
let mut wi: Vector3f = Vector3f::default();
let wo: Vector3f = -photon_ray.d;
let mut pdf: Float = 0.0;
let bsdf_flags: u8 = BxdfType::BsdfAll as u8;
let mut sampled_type: u8 = u8::max_value();
// generate _bsdf_sample_ for outgoing photon sample
let bsdf_sample: Point2f = Point2f {
x: radical_inverse(
halton_dim as u16,
halton_index,
),
y: radical_inverse(
(halton_dim + 1) as u16,
halton_index,
),
};
halton_dim += 2;
let fr: Spectrum = photon_bsdf.sample_f(
&wo,
&mut wi,
&bsdf_sample,
&mut pdf,
bsdf_flags,
&mut sampled_type,
);
if fr.is_black() || pdf == 0.0 as Float {
break;
}
let bnew: Spectrum = beta
* fr
* vec3_abs_dot_nrmf(&wi, &isect.shading.n)
/ pdf;
// possibly terminate photon path with Russian roulette
let q: Float = (0.0 as Float)
.max(1.0 as Float - bnew.y() / beta.y());
if radical_inverse(
halton_dim as u16,
halton_index,
) < q
{
break;
} else {
halton_dim += 1;
}
beta = bnew / (1.0 as Float - q);
photon_ray = isect.spawn_ray(&wi);
} else {
photon_ray = isect.spawn_ray(&photon_ray.d);
// --depth;
continue;
}
} else {
break;
}
}
}
}
});
// send progress through the channel to main thread
band_tx.send(b).unwrap_or_else(|_| panic!("Failed to send progress"));
}
// spawn thread to report progress
scope.spawn(move |_| {
for _ in 0..num_cores {
band_rx.recv().unwrap();
}
});
})
.unwrap();
}
}
}
// update pixel values from this pass's photons
{
// TODO: ProfilePhase _(Prof::SPPMStatsUpdate);
// println!("Update pixel values from this pass's photons ...");
let chunk_size: usize = (n_pixels / num_cores as i32) as usize;
{
let bands: Vec<&mut [SPPMPixel]> = pixels.chunks_mut(chunk_size).collect();
crossbeam::scope(|scope| {
let (band_tx, band_rx) = crossbeam_channel::bounded(num_cores);
// spawn worker threads
for (b, band) in bands.into_iter().enumerate() {
let band_tx = band_tx.clone();
scope.spawn(move |_| {
for p in band.iter_mut() {
// let mut p = &mut pixels[i];
let p_m = p.m.load(atomic::Ordering::Relaxed);
if p_m > 0_i32 {
// update pixel photon count, search radius, and $\tau$ from photons
let gamma: Float = 2.0 as Float / 3.0 as Float;
let n_new: Float = p.n + gamma * p_m as Float;
let r_new: Float =
p.radius * (n_new / (p.n + p_m as Float)).sqrt();
let mut phi: Spectrum = Spectrum::default();
for j in 0..3 {
match j {
0 => {
phi[RGBEnum::Red] = Float::from(&p.phi[j]);
}
1 => {
phi[RGBEnum::Green] =
Float::from(&p.phi[j]);
}
_ => {
phi[RGBEnum::Blue] = Float::from(&p.phi[j]);
}
}
}
p.tau = (p.tau + p.vp.beta * phi) * (r_new * r_new)
/ (p.radius * p.radius);
p.n = n_new;
p.radius = r_new;
p.m.store(0, atomic::Ordering::Relaxed);
for j in 0..3 {
p.phi[j] = AtomicFloat::new(0.0 as Float);
}
}
// reset _VisiblePoint_ in pixel
p.vp.beta = Spectrum::default();
p.vp.bsdf = None;
}
});
// send progress through the channel to main thread
band_tx
.send(b)
.unwrap_or_else(|_| panic!("Failed to send progress"));
}
// spawn thread to report progress
scope.spawn(move |_| {
for _ in 0..num_cores {
band_rx.recv().unwrap();
}
});
})
.unwrap();
}
}
// periodically store SPPM image in film and write image
if iteration + 1 == self.n_iterations
|| ((iteration + 1) % self.write_frequency) == 0
{
let x0: i32 = pixel_bounds.p_min.x;
let x1: i32 = pixel_bounds.p_max.x;
let np: u64 = (iteration + 1) as u64 * self.photons_per_iteration as u64;
let mut image: Vec<Spectrum> = Vec::with_capacity(pixel_bounds.area() as usize);
for y in (pixel_bounds.p_min.y as usize)..(pixel_bounds.p_max.y as usize) {
for x in (x0 as usize)..(x1 as usize) {
// compute radiance _L_ for SPPM pixel _pixel_
let pixel = &pixels[(y - pixel_bounds.p_min.y as usize)
* (x1 as usize - x0 as usize)
+ (x - x0 as usize)];
let mut l: Spectrum = pixel.ld / (iteration + 1) as Float;
l += pixel.tau / (np as Float * PI * pixel.radius * pixel.radius);
image.push(l);
}
}
film.set_image(&image[..]);
film.write_image(1.0 as Float);
// TODO: write SPPM radius image, if requested
// if (getenv("SPPM_RADIUS")) {
// std::unique_ptr<Float[]> rimg(
// new Float[3 * pixel_bounds.area()]);
// Float minrad = 1e30f, maxrad = 0;
// for (int y = pixel_bounds.p_min.y; y < pixel_bounds.p_max.y; ++y) {
// for (int x = x0; x < x1; ++x) {
// const SPPMPixel &p =
// pixels[(y - pixel_bounds.p_min.y) * (x1 - x0) +
// (x - x0)];
// minrad = std::min(minrad, p.radius);
// maxrad = std::max(maxrad, p.radius);
// }
// }
// fprintf(stderr,
// "iterations: %d (%.2f s) radius range: %f - %f\n",
// iter + 1, progress.ElapsedMS() / 1000., minrad, maxrad);
// int offset = 0;
// for (int y = pixel_bounds.p_min.y; y < pixel_bounds.p_max.y; ++y) {
// for (int x = x0; x < x1; ++x) {
// const SPPMPixel &p =
// pixels[(y - pixel_bounds.p_min.y) * (x1 - x0) +
// (x - x0)];
// Float v = 1.f - (p.radius - minrad) / (maxrad - minrad);
// rimg[offset++] = v;
// rimg[offset++] = v;
// rimg[offset++] = v;
// }
// }
// Point2i res(pixel_bounds.p_max.x - pixel_bounds.p_min.x,
// pixel_bounds.p_max.y - pixel_bounds.p_min.y);
// WriteImage("sppm_radius.png", rimg.get(), pixel_bounds, res);
// }
}
}
// TODO: progress.Done();
}
}
pub fn get_camera(&self) -> Arc<Camera> {
self.camera.clone()
}
}
#[derive(Default)]
pub struct VisiblePoint {
pub p: Point3f,
pub wo: Vector3f,
pub bsdf: Option<Bsdf>,
pub beta: Spectrum,
}
#[derive(Default)]
pub struct SPPMPixel {
pub radius: Float,
pub ld: Spectrum,
pub vp: VisiblePoint,
pub phi: [AtomicFloat; 3],
pub m: Atomic<i32>,
pub n: Float,
pub tau: Spectrum,
}
pub struct SPPMPixelListNode<'p> {
pub pixel: &'p SPPMPixel,
pub next: AtomSetOnce<Arc<SPPMPixelListNode<'p>>>,
}
impl<'p> SPPMPixelListNode<'p> {
pub fn new(pixel: &'p SPPMPixel) -> Self {
SPPMPixelListNode {
pixel,
next: AtomSetOnce::empty(),
}
}
}
fn to_grid(p: &Point3f, bounds: &Bounds3f, grid_res: &[i32; 3], pi: &mut Point3i) -> bool {
let mut in_bounds: bool = true;
let pg: Vector3f = bounds.offset(p);
for i in XYZEnum::iter() {
(*pi)[i] = (grid_res[i as usize] as Float * pg[i]) as i32;
in_bounds &= (*pi)[i] >= 0 && (*pi)[i] < grid_res[i as usize];
(*pi)[i] = clamp_t((*pi)[i], 0, grid_res[i as usize] - 1);
}
in_bounds
}
fn hash(p: &Point3i, hash_size: i32) -> usize {
let (x, _overflow) = p.x.overflowing_mul(73_856_093);
let (y, _overflow) = p.y.overflowing_mul(19_349_663);
let (z, _overflow) = p.z.overflowing_mul(83_492_791);
((x ^ y ^ z) as u32 % hash_size as u32) as usize
}