1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
//std
use std::sync::Arc;
// pbrt
use crate::core::bssrdf::SeparableBssrdfAdapter;
use crate::core::interaction::SurfaceInteraction;
use crate::core::material::{Material, TransportMode};
use crate::core::microfacet::{
BeckmannDistribution, MicrofacetDistribution, TrowbridgeReitzDistribution,
};
use crate::core::pbrt::{Float, Spectrum};
use crate::core::reflection::{
Bxdf, FourierBSDF, Fresnel, FresnelBlend, FresnelConductor, FresnelDielectric, FresnelNoOp,
FresnelSpecular, LambertianReflection, LambertianTransmission, MicrofacetReflection,
MicrofacetTransmission, OrenNayar, SpecularReflection, SpecularTransmission,
};
use crate::core::texture::Texture;
use crate::materials::disney::{
DisneyClearCoat, DisneyDiffuse, DisneyFakeSS, DisneyMicrofacetDistribution, DisneyRetro,
DisneySheen,
};
use crate::materials::hair::HairBSDF;
// see mixmat.h
/// The mix material takes two other materials and a texture and uses
/// the value returned by the texture to blend between the two
/// materials at the point being shaded.
pub struct MixMaterial {
pub m1: Arc<Material>,
pub m2: Arc<Material>,
pub scale: Arc<dyn Texture<Spectrum> + Sync + Send>, // default: 0.5
}
impl MixMaterial {
pub fn new(
m1: Arc<Material>,
m2: Arc<Material>,
scale: Arc<dyn Texture<Spectrum> + Send + Sync>,
) -> Self {
MixMaterial { m1, m2, scale }
}
// Material
pub fn compute_scattering_functions(
&self,
si: &mut SurfaceInteraction,
// arena: &mut Arena,
mode: TransportMode,
allow_multiple_lobes: bool,
_material: Option<Arc<Material>>,
_scale: Option<Spectrum>,
) {
let s1: Spectrum = self
.scale
.evaluate(si)
.clamp(0.0 as Float, std::f32::INFINITY as Float);
let s2: Spectrum =
(Spectrum::new(1.0 as Float) - s1).clamp(0.0 as Float, std::f32::INFINITY as Float);
let mut si2: SurfaceInteraction = SurfaceInteraction::new(
&si.common.p,
&si.common.p_error,
si.uv,
&si.common.wo,
&si.dpdu,
&si.dpdv,
&si.dndu,
&si.dndv,
si.common.time,
si.shape,
);
self.m1
.compute_scattering_functions(si, mode, allow_multiple_lobes, None, Some(s1));
self.m2
.compute_scattering_functions(&mut si2, mode, allow_multiple_lobes, None, Some(s2));
if let Some(bsdf1) = &mut si.bsdf {
if let Some(bsdf2) = &si2.bsdf {
// get Bxdfs from si2 before it gets out of scope
for bxdf2 in bsdf2.bxdfs.as_slice() {
match bxdf2 {
Bxdf::Empty(_bxdf) => break,
Bxdf::SpecRefl(bxdf) => {
let fresnel = match &bxdf.fresnel {
Fresnel::Conductor(fresnel) => {
Fresnel::Conductor(FresnelConductor {
eta_i: fresnel.eta_i,
eta_t: fresnel.eta_t,
k: fresnel.k,
})
}
Fresnel::Dielectric(fresnel) => {
Fresnel::Dielectric(FresnelDielectric {
eta_i: fresnel.eta_i,
eta_t: fresnel.eta_t,
})
}
_ => Fresnel::NoOp(FresnelNoOp {}),
};
bsdf1.add(Bxdf::SpecRefl(SpecularReflection::new(
bxdf.r,
fresnel,
bxdf.sc_opt,
)))
}
Bxdf::SpecTrans(bxdf) => {
bsdf1.add(Bxdf::SpecTrans(SpecularTransmission::new(
bxdf.t,
bxdf.eta_a,
bxdf.eta_b,
bxdf.mode,
bxdf.sc_opt,
)))
}
Bxdf::FresnelSpec(bxdf) => {
bsdf1.add(Bxdf::FresnelSpec(FresnelSpecular::new(
bxdf.r,
bxdf.t,
bxdf.eta_a,
bxdf.eta_b,
bxdf.mode,
bxdf.sc_opt,
)))
}
Bxdf::LambertianRefl(bxdf) => bsdf1.add(Bxdf::LambertianRefl(
LambertianReflection::new(bxdf.r, bxdf.sc_opt),
)),
Bxdf::LambertianTrans(bxdf) => bsdf1.add(Bxdf::LambertianTrans(
LambertianTransmission::new(bxdf.t, bxdf.sc_opt),
)),
Bxdf::OrenNayarRefl(bxdf) => bsdf1.add(Bxdf::OrenNayarRefl(OrenNayar {
r: bxdf.r,
a: bxdf.a,
b: bxdf.b,
sc_opt: bxdf.sc_opt,
})),
Bxdf::MicrofacetRefl(bxdf) => {
let distribution = match &bxdf.distribution {
MicrofacetDistribution::Beckmann(distribution) => {
MicrofacetDistribution::Beckmann(BeckmannDistribution {
alpha_x: distribution.alpha_x,
alpha_y: distribution.alpha_y,
sample_visible_area: distribution.sample_visible_area,
})
}
MicrofacetDistribution::TrowbridgeReitz(distribution) => {
MicrofacetDistribution::TrowbridgeReitz(
TrowbridgeReitzDistribution {
alpha_x: distribution.alpha_x,
alpha_y: distribution.alpha_y,
sample_visible_area: distribution.sample_visible_area,
},
)
}
MicrofacetDistribution::DisneyMicrofacet(distribution) => {
MicrofacetDistribution::DisneyMicrofacet(
DisneyMicrofacetDistribution::new(
distribution.inner.alpha_x,
distribution.inner.alpha_y,
),
)
}
};
let fresnel = match &bxdf.fresnel {
Fresnel::Conductor(fresnel) => {
Fresnel::Conductor(FresnelConductor {
eta_i: fresnel.eta_i,
eta_t: fresnel.eta_t,
k: fresnel.k,
})
}
Fresnel::Dielectric(fresnel) => {
Fresnel::Dielectric(FresnelDielectric {
eta_i: fresnel.eta_i,
eta_t: fresnel.eta_t,
})
}
_ => Fresnel::NoOp(FresnelNoOp {}),
};
bsdf1.add(Bxdf::MicrofacetRefl(MicrofacetReflection::new(
bxdf.r,
distribution,
fresnel,
bxdf.sc_opt,
)))
}
Bxdf::MicrofacetTrans(bxdf) => {
let distribution = match &bxdf.distribution {
MicrofacetDistribution::Beckmann(distribution) => {
MicrofacetDistribution::Beckmann(BeckmannDistribution {
alpha_x: distribution.alpha_x,
alpha_y: distribution.alpha_y,
sample_visible_area: distribution.sample_visible_area,
})
}
MicrofacetDistribution::TrowbridgeReitz(distribution) => {
MicrofacetDistribution::TrowbridgeReitz(
TrowbridgeReitzDistribution {
alpha_x: distribution.alpha_x,
alpha_y: distribution.alpha_y,
sample_visible_area: distribution.sample_visible_area,
},
)
}
MicrofacetDistribution::DisneyMicrofacet(distribution) => {
MicrofacetDistribution::DisneyMicrofacet(
DisneyMicrofacetDistribution::new(
distribution.inner.alpha_x,
distribution.inner.alpha_y,
),
)
}
};
bsdf1.add(Bxdf::MicrofacetTrans(MicrofacetTransmission::new(
bxdf.t,
distribution,
bxdf.eta_a,
bxdf.eta_b,
bxdf.mode,
bxdf.sc_opt,
)))
}
Bxdf::FresnelBlnd(bxdf) => {
let mut distrib: Option<MicrofacetDistribution> = None;
if let Some(distribution) = &bxdf.distribution {
distrib = match &distribution {
MicrofacetDistribution::Beckmann(distribution) => Some(
MicrofacetDistribution::Beckmann(BeckmannDistribution {
alpha_x: distribution.alpha_x,
alpha_y: distribution.alpha_y,
sample_visible_area: distribution.sample_visible_area,
}),
),
MicrofacetDistribution::TrowbridgeReitz(distribution) => {
Some(MicrofacetDistribution::TrowbridgeReitz(
TrowbridgeReitzDistribution {
alpha_x: distribution.alpha_x,
alpha_y: distribution.alpha_y,
sample_visible_area: distribution
.sample_visible_area,
},
))
}
MicrofacetDistribution::DisneyMicrofacet(distribution) => {
Some(MicrofacetDistribution::DisneyMicrofacet(
DisneyMicrofacetDistribution::new(
distribution.inner.alpha_x,
distribution.inner.alpha_y,
),
))
}
}
}
bsdf1.add(Bxdf::FresnelBlnd(FresnelBlend::new(
bxdf.rd,
bxdf.rs,
distrib,
bxdf.sc_opt,
)))
}
Bxdf::Fourier(bxdf) => bsdf1.add(Bxdf::Fourier(FourierBSDF::new(
bxdf.bsdf_table.clone(),
bxdf.mode,
bxdf.sc_opt,
))),
Bxdf::Bssrdf(bxdf) => bsdf1.add(Bxdf::Bssrdf(SeparableBssrdfAdapter {
bssrdf: bxdf.bssrdf.clone(),
mode: bxdf.mode,
eta2: bxdf.eta2,
})),
Bxdf::DisDiff(bxdf) => {
bsdf1.add(Bxdf::DisDiff(DisneyDiffuse::new(bxdf.r, bxdf.sc_opt)))
}
Bxdf::DisSS(bxdf) => bsdf1.add(Bxdf::DisSS(DisneyFakeSS::new(
bxdf.r,
bxdf.roughness,
bxdf.sc_opt,
))),
Bxdf::DisRetro(bxdf) => bsdf1.add(Bxdf::DisRetro(DisneyRetro::new(
bxdf.r,
bxdf.roughness,
bxdf.sc_opt,
))),
Bxdf::DisSheen(bxdf) => {
bsdf1.add(Bxdf::DisSheen(DisneySheen::new(bxdf.r, bxdf.sc_opt)))
}
Bxdf::DisClearCoat(bxdf) => bsdf1.add(Bxdf::DisClearCoat(
DisneyClearCoat::new(bxdf.weight, bxdf.gloss, bxdf.sc_opt),
)),
Bxdf::Hair(bxdf) => bsdf1.add(Bxdf::Hair(HairBSDF {
h: bxdf.h,
gamma_o: bxdf.gamma_o,
eta: bxdf.eta,
sigma_a: bxdf.sigma_a,
beta_m: bxdf.beta_m,
beta_n: bxdf.beta_n,
v: bxdf.v,
s: bxdf.s,
sin_2k_alpha: bxdf.sin_2k_alpha,
cos_2k_alpha: bxdf.cos_2k_alpha,
sc_opt: bxdf.sc_opt,
})),
};
}
}
}
}
}