1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
// std
use std::sync::Arc;
// pbrt
use crate::core::geometry::{
    bnd3_expand, bnd3_union_bnd3f, nrm_abs_dot_vec3f, nrm_cross_vec3, nrm_dot_nrmf,
    pnt3_distance_squaredf, pnt3_distancef, pnt3_lerp, vec2_dotf, vec3_coordinate_system,
    vec3_cross_vec3,
};
use crate::core::geometry::{Bounds3f, Normal3f, Point2f, Point3f, Ray, Vector2f, Vector3f};
use crate::core::interaction::{Interaction, InteractionCommon, SurfaceInteraction};
use crate::core::material::Material;
use crate::core::paramset::ParamSet;
use crate::core::pbrt::Float;
use crate::core::pbrt::{clamp_t, float_to_bits, lerp};
use crate::core::shape::Shape;
use crate::core::transform::Transform;

// see curve.h

#[derive(Debug, Clone, PartialEq)]
pub enum CurveType {
    Flat,
    Cylinder,
    Ribbon,
}

#[derive(Clone)]
pub struct CurveCommon {
    pub curve_type: CurveType,
    pub cp_obj: [Point3f; 4],
    pub width: [Float; 2],
    pub n: [Normal3f; 2],
    pub normal_angle: Float,
    pub inv_sin_normal_angle: Float,
}

impl CurveCommon {
    pub fn new(
        c: &[Point3f; 4],
        width0: Float,
        width1: Float,
        curve_type: CurveType,
        norm: Option<[Normal3f; 2]>,
    ) -> Self {
        if let Some(norm) = norm {
            let n0: Normal3f = norm[0].normalize();
            let n1: Normal3f = norm[1].normalize();
            let normal_angle: Float =
                clamp_t(nrm_dot_nrmf(&n0, &n1), 0.0 as Float, 1.0 as Float).acos();
            let inv_sin_normal_angle: Float = 1.0 as Float / normal_angle.sin();
            CurveCommon {
                curve_type,
                cp_obj: [c[0], c[1], c[2], c[3]],
                width: [width0, width1],
                n: [n0, n1],
                normal_angle,
                inv_sin_normal_angle,
            }
        } else {
            CurveCommon {
                curve_type,
                cp_obj: [c[0], c[1], c[2], c[3]],
                width: [width0, width1],
                n: [Normal3f::default(); 2],
                normal_angle: 0.0 as Float,
                inv_sin_normal_angle: 0.0 as Float,
            }
        }
    }
}

#[derive(Clone)]
pub struct Curve {
    pub common: Arc<CurveCommon>,
    pub u_min: Float,
    pub u_max: Float,
    // inherited from class Shape (see shape.h)
    pub object_to_world: Transform,
    pub world_to_object: Transform,
    pub reverse_orientation: bool,
    pub transform_swaps_handedness: bool,
    pub material: Option<Arc<Material>>,
}

impl Curve {
    pub fn new(
        object_to_world: Transform,
        world_to_object: Transform,
        reverse_orientation: bool,
        common: Arc<CurveCommon>,
        u_min: Float,
        u_max: Float,
    ) -> Self {
        Curve {
            // Curve
            common,
            u_min,
            u_max,
            // Shape
            object_to_world,
            world_to_object,
            reverse_orientation,
            transform_swaps_handedness: object_to_world.swaps_handedness(),
            material: None,
        }
    }
    pub fn create(
        o2w: Transform,
        w2o: Transform,
        reverse_orientation: bool,
        c: &[Point3f; 4],
        w0: Float,
        w1: Float,
        curve_type: CurveType,
        norm: Option<[Normal3f; 2]>,
        split_depth: i32,
    ) -> Vec<Arc<Shape>> {
        let common: Arc<CurveCommon> = Arc::new(CurveCommon::new(c, w0, w1, curve_type, norm));
        let n_segments: usize = 1_usize << split_depth;
        let mut segments: Vec<Arc<Shape>> = Vec::with_capacity(n_segments);
        for i in 0..n_segments {
            let u_min: Float = i as Float / n_segments as Float;
            let u_max: Float = (i + 1) as Float / n_segments as Float;
            // segments.push_back(std::make_shared<Curve>(o2w, w2o, reverseOrientation,
            //                                            common, u_min, u_max));
            let curve: Arc<Shape> = Arc::new(Shape::Crv(Curve::new(
                o2w,
                w2o,
                reverse_orientation,
                common.clone(),
                u_min,
                u_max,
            )));
            segments.push(curve.clone());
            // TODO: ++nSplitCurves;
        }
        // TODO: curveBytes += sizeof(CurveCommon) + n_segments * sizeof(Curve);
        segments
    }
    pub fn recursive_intersect(
        &self,
        ray: &Ray,
        cp: &[Point3f; 4],
        ray_to_object: &Transform,
        u0: Float,
        u1: Float,
        depth: i32,
        t_hit: &mut Float,
        _isect: &mut SurfaceInteraction,
    ) -> bool {
        let ray_length: Float = ray.d.length();

        if depth > 0_i32 {
            // split curve segment into sub-segments and test for intersection
            let mut cp_split: [Point3f; 7] = [Point3f::default(); 7];
            subdivide_bezier(cp, &mut cp_split);

            // For each of the two segments, see if the ray's bounding
            // box overlaps the segment before recursively checking
            // for intersection with it.

            let u: [Float; 3] = [u0, (u0 + u1) / 2.0 as Float, u1];
            // pointer to the 4 control points for the current segment.
            for seg in 0..2 {
                let cps: &[Point3f] = &cp_split[seg * 3..seg * 3 + 4];
                let max_width: Float = lerp(u[seg], self.common.width[0], self.common.width[1])
                    .max(lerp(u[seg + 1], self.common.width[0], self.common.width[1]));

                // As above, check y first, since it most commonly
                // lets us exit out early.

                if cps[0].y.max(cps[1].y).max(cps[2].y.max(cps[3].y)) + 0.5 as Float * max_width
                    < 0.0 as Float
                    || cps[0].y.min(cps[1].y).min(cps[2].y.min(cps[3].y)) - 0.5 as Float * max_width
                        > 0.0 as Float
                {
                    continue;
                }

                if cps[0].x.max(cps[1].x).max(cps[2].x.max(cps[3].x)) + 0.5 as Float * max_width
                    < 0.0 as Float
                    || cps[0].x.min(cps[1].x).min(cps[2].x.min(cps[3].x)) - 0.5 as Float * max_width
                        > 0.0 as Float
                {
                    continue;
                }

                let z_max: Float = ray_length * ray.t_max.get();
                if cps[0].z.max(cps[1].z).max(cps[2].z.max(cps[3].z)) + 0.5 as Float * max_width
                    < 0.0 as Float
                    || cps[0].z.min(cps[1].z).min(cps[2].z.min(cps[3].z)) - 0.5 as Float * max_width
                        > z_max
                {
                    continue;
                }

                if self.recursive_intersect(
                    ray,
                    &[cps[0], cps[1], cps[2], cps[3]],
                    ray_to_object,
                    u[seg],
                    u[seg + 1],
                    depth - 1,
                    t_hit,
                    _isect,
                ) {
                    // If we found an intersection and this is a shadow ray,
                    // we can exit out immediately.
                    if *t_hit == 0.0 as Float {
                        return true;
                    }
                }
            }
            false
        } else {
            // intersect ray with curve segment

            // test ray against segment endpoint boundaries

            // test sample point against tangent perpendicular at curve start
            let mut edge: Float = (cp[1].y - cp[0].y) * -cp[0].y + cp[0].x * (cp[0].x - cp[1].x);
            if edge < 0.0 as Float {
                return false;
            }

            // test sample point against tangent perpendicular at curve end
            edge = (cp[2].y - cp[3].y) * -cp[3].y + cp[3].x * (cp[3].x - cp[2].x);
            if edge < 0.0 as Float {
                return false;
            }

            // compute line $w$ that gives minimum distance to sample point
            let segment_direction: Vector2f = Point2f {
                x: cp[3].x,
                y: cp[3].y,
            } - Point2f {
                x: cp[0].x,
                y: cp[0].y,
            };
            let denom: Float = segment_direction.length_squared();
            if denom == 0.0 as Float {
                return false;
            }
            let w: Float = vec2_dotf(
                &-Vector2f {
                    x: cp[0].x,
                    y: cp[0].y,
                },
                &segment_direction,
            ) / denom;

            // compute $u$ coordinate of curve intersection point and _hitWidth_
            let u: Float = clamp_t(lerp(w, u0, u1), u0, u1);
            let mut hit_width: Float = lerp(u, self.common.width[0], self.common.width[1]);
            let mut n_hit: Normal3f = Normal3f::default();
            if self.common.curve_type == CurveType::Ribbon {
                // scale _hitWidth_ based on ribbon orientation
                let sin0: Float = ((1.0 as Float - u) * self.common.normal_angle).sin()
                    * self.common.inv_sin_normal_angle;
                let sin1: Float =
                    (u * self.common.normal_angle).sin() * self.common.inv_sin_normal_angle;
                n_hit = self.common.n[0] * sin0 + self.common.n[1] * sin1;
                hit_width *= nrm_abs_dot_vec3f(&n_hit, &ray.d) / ray_length;
            }

            // test intersection point against curve width
            let mut dpcdw: Vector3f = Vector3f::default();
            let pc: Point3f =
                eval_bezier(cp, clamp_t(w, 0.0 as Float, 1.0 as Float), Some(&mut dpcdw));
            let pt_curve_dist2: Float = pc.x * pc.x + pc.y * pc.y;
            if pt_curve_dist2 > hit_width * hit_width * 0.25 as Float {
                return false;
            }
            let z_max: Float = ray_length * ray.t_max.get();
            if pc.z < 0.0 as Float || pc.z > z_max {
                return false;
            }

            // compute $v$ coordinate of curve intersection point
            let pt_curve_dist: Float = pt_curve_dist2.sqrt();
            let edge_func: Float = dpcdw.x * -pc.y + pc.x * dpcdw.y;
            let v: Float = if edge_func > 0.0 as Float {
                0.5 as Float + pt_curve_dist / hit_width
            } else {
                0.5 as Float - pt_curve_dist / hit_width
            };

            // compute hit _t_ and partial derivatives for curve intersection
            // if (t_hit != nullptr) {
            // FIXME: this t_hit isn't quite right for ribbons...
            *t_hit = pc.z / ray_length;
            // compute error bounds for curve intersection
            let p_error: Vector3f = Vector3f {
                x: 2.0 as Float * hit_width,
                y: 2.0 as Float * hit_width,
                z: 2.0 as Float * hit_width,
            };

            // compute $\dpdu$ and $\dpdv$ for curve intersection
            let mut dpdu: Vector3f = Vector3f::default();
            let dpdv: Vector3f;
            eval_bezier(&self.common.cp_obj, u, Some(&mut dpdu));
            if self.common.curve_type == CurveType::Ribbon {
                dpdv = nrm_cross_vec3(&n_hit, &dpdu).normalize() * hit_width;
            } else {
                // compute curve $\dpdv$ for flat and cylinder curves
                let dpdu_plane: Vector3f =
                    Transform::inverse(ray_to_object).transform_vector(&dpdu);
                let mut dpdv_plane: Vector3f = Vector3f {
                    x: -dpdu_plane.y,
                    y: dpdu_plane.x,
                    z: 0.0,
                }
                .normalize()
                    * hit_width;
                if self.common.curve_type == CurveType::Cylinder {
                    // rotate _dpdvPlane_ to give cylindrical appearance
                    let theta: Float = lerp(v, -90.0 as Float, 90.0 as Float);
                    let rot: Transform = Transform::rotate(-theta, &dpdu_plane);
                    dpdv_plane = rot.transform_vector(&dpdv_plane);
                }
                dpdv = ray_to_object.transform_vector(&dpdv_plane);
            }
            let mut si: SurfaceInteraction = SurfaceInteraction::new(
                &ray.position(pc.z),
                &p_error,
                Point2f { x: u, y: v },
                &-ray.d,
                &dpdu,
                &dpdv,
                &Normal3f::default(),
                &Normal3f::default(),
                ray.time,
                None,
            );
            self.object_to_world.transform_surface_interaction(&mut si);
            // if let Some(ref shape) = si.shape {
            //     isect.shape = Some(shape.clone());
            // }
            // }
            // TODO: ++n_hits;
            true
        }
    }
    // Shape
    pub fn object_bound(&self) -> Bounds3f {
        // compute object-space control points for curve segment, _cp_obj_
        let mut cp_obj: [Point3f; 4] = [Point3f::default(); 4];
        cp_obj[0] = blossom_bezier(&self.common.cp_obj, self.u_min, self.u_min, self.u_min);
        cp_obj[1] = blossom_bezier(&self.common.cp_obj, self.u_min, self.u_min, self.u_max);
        cp_obj[2] = blossom_bezier(&self.common.cp_obj, self.u_min, self.u_max, self.u_max);
        cp_obj[3] = blossom_bezier(&self.common.cp_obj, self.u_max, self.u_max, self.u_max);
        let b: Bounds3f = bnd3_union_bnd3f(
            &Bounds3f::new(cp_obj[0], cp_obj[1]),
            &Bounds3f::new(cp_obj[2], cp_obj[3]),
        );
        let width: [Float; 2] = [
            lerp(self.u_min, self.common.width[0], self.common.width[1]),
            lerp(self.u_max, self.common.width[0], self.common.width[1]),
        ];
        bnd3_expand(&b, width[0].max(width[1]) * 0.5 as Float)
    }
    pub fn world_bound(&self) -> Bounds3f {
        // in C++: Bounds3f Shape::WorldBound() const { return (*ObjectToWorld)(ObjectBound()); }
        self.object_to_world.transform_bounds(&self.object_bound())
    }
    pub fn intersect(&self, r: &Ray, t_hit: &mut Float, isect: &mut SurfaceInteraction) -> bool {
        // TODO: ProfilePhase p(isect ? Prof::CurveIntersect : Prof::CurveIntersectP);
        // TODO: ++nTests;
        // transform _Ray_ to object space
        let mut o_err: Vector3f = Vector3f::default();
        let mut d_err: Vector3f = Vector3f::default();
        let ray: Ray = self
            .world_to_object
            .transform_ray_with_error(r, &mut o_err, &mut d_err);

        // compute object-space control points for curve segment, _cp_obj_

        let mut cp_obj: [Point3f; 4] = [Point3f::default(); 4];
        cp_obj[0] = blossom_bezier(&self.common.cp_obj, self.u_min, self.u_min, self.u_min);
        cp_obj[1] = blossom_bezier(&self.common.cp_obj, self.u_min, self.u_min, self.u_max);
        cp_obj[2] = blossom_bezier(&self.common.cp_obj, self.u_min, self.u_max, self.u_max);
        cp_obj[3] = blossom_bezier(&self.common.cp_obj, self.u_max, self.u_max, self.u_max);

        // project curve control points to plane perpendicular to ray

        // Be careful to set the "up" direction passed to LookAt() to
        // equal the vector from the first to the last control points.
        // In turn, this helps orient the curve to be roughly parallel
        // to the x axis in the ray coordinate system.

        // In turn (especially for curves that are approaching stright
        // lines), we get curve bounds with minimal extent in y, which
        // in turn lets us early out more quickly in
        // recursiveIntersect().

        // Vector3f dx = Cross(ray.d, cp_obj[3] - cp_obj[0]);
        let mut dx: Vector3f = vec3_cross_vec3(&ray.d, &(cp_obj[3] - cp_obj[0]));
        if dx.length_squared() == 0.0 as Float {
            // if the ray and the vector between the first and last
            // control points are parallel, dx will be zero.  Generate
            // an arbitrary xy orientation for the ray coordinate
            // system so that intersection tests can proceeed in this
            // unusual case.
            let mut dy: Vector3f = Vector3f::default();
            vec3_coordinate_system(&ray.d, &mut dx, &mut dy);
        }

        let object_to_ray: Transform = Transform::look_at(&ray.o, &(ray.o + ray.d), &dx);
        let cp: [Point3f; 4] = [
            object_to_ray.transform_point(&cp_obj[0]),
            object_to_ray.transform_point(&cp_obj[1]),
            object_to_ray.transform_point(&cp_obj[2]),
            object_to_ray.transform_point(&cp_obj[3]),
        ];

        // Before going any further, see if the ray's bounding box
        // intersects the curve's bounding box. We start with the y
        // dimension, since the y extent is generally the smallest
        // (and is often tiny) due to our careful orientation of the
        // ray coordinate ysstem above.

        let max_width: Float = lerp(self.u_min, self.common.width[0], self.common.width[1])
            .max(lerp(self.u_max, self.common.width[0], self.common.width[1]));
        if cp[0].y.max(cp[1].y).max(cp[2].y.max(cp[3].y)) + 0.5 as Float * max_width < 0.0 as Float
            || cp[0].y.min(cp[1].y).min(cp[2].y.min(cp[3].y)) - 0.5 as Float * max_width
                > 0.0 as Float
        {
            return false;
        }

        // check for non-overlap in x.
        if cp[0].x.max(cp[1].x).max(cp[2].x.max(cp[3].x)) + 0.5 as Float * max_width < 0.0 as Float
            || cp[0].x.min(cp[1].x).min(cp[2].x.min(cp[3].x)) - 0.5 as Float * max_width
                > 0.0 as Float
        {
            return false;
        }

        // check for non-overlap in z.
        let ray_length: Float = ray.d.length();
        let z_max: Float = ray_length * ray.t_max.get();
        if cp[0].z.max(cp[1].z).max(cp[2].z.max(cp[3].z)) + 0.5 as Float * max_width < 0.0 as Float
            || cp[0].z.min(cp[1].z).min(cp[2].z.min(cp[3].z)) - 0.5 as Float * max_width > z_max
        {
            return false;
        }

        // compute refinement depth for curve, _maxDepth_
        let mut l0: Float = 0.0 as Float;
        for i in 0..2 {
            l0 = l0.max(
                (cp[i].x - 2.0 as Float * cp[i + 1].x + cp[i + 2].x)
                    .abs()
                    .max((cp[i].y - 2.0 as Float * cp[i + 1].y + cp[i + 2].y).abs())
                    .max((cp[i].z - 2.0 as Float * cp[i + 1].z + cp[i + 2].z).abs()),
            );
        }

        // width / 20
        let eps: Float = self.common.width[0].max(self.common.width[1]) * 0.05 as Float;
        // compute log base 4 by dividing log2 in half.
        let r0: i32 =
            log2(std::f32::consts::SQRT_2 as Float * 6.0 as Float * l0 / (8.0 as Float * eps))
                / 2_i32;
        let max_depth: i32 = clamp_t(r0, 0_i32, 10_i32);
        // TODO: ReportValue(refinementLevel, maxDepth);
        self.recursive_intersect(
            &ray,
            &[cp[0], cp[1], cp[2], cp[3]],
            &Transform::inverse(&object_to_ray),
            self.u_min,
            self.u_max,
            max_depth,
            t_hit,
            isect,
        )
    }
    pub fn intersect_p(&self, r: &Ray) -> bool {
        let mut t_hit: Float = 0.0;
        let mut isect_light: SurfaceInteraction = SurfaceInteraction::default();
        self.intersect(r, &mut t_hit, &mut isect_light)
    }
    pub fn get_reverse_orientation(&self) -> bool {
        self.reverse_orientation
    }
    pub fn get_transform_swaps_handedness(&self) -> bool {
        self.transform_swaps_handedness
    }
    pub fn get_object_to_world(&self) -> Transform {
        self.object_to_world
    }
    pub fn area(&self) -> Float {
        // compute object-space control points for curve segment, _cp_obj_
        let mut cp_obj: [Point3f; 4] = [Point3f::default(); 4];
        cp_obj[0] = blossom_bezier(&self.common.cp_obj, self.u_min, self.u_min, self.u_min);
        cp_obj[1] = blossom_bezier(&self.common.cp_obj, self.u_min, self.u_min, self.u_max);
        cp_obj[2] = blossom_bezier(&self.common.cp_obj, self.u_min, self.u_max, self.u_max);
        cp_obj[3] = blossom_bezier(&self.common.cp_obj, self.u_max, self.u_max, self.u_max);
        let width0: Float = lerp(self.u_min, self.common.width[0], self.common.width[1]);
        let width1: Float = lerp(self.u_max, self.common.width[0], self.common.width[1]);
        let avg_width: Float = (width0 + width1) * 0.5 as Float;
        let mut approx_length: Float = 0.0 as Float;
        for i in 0..3 {
            approx_length += pnt3_distancef(&cp_obj[i], &cp_obj[i + 1]);
        }
        approx_length * avg_width
    }
    pub fn sample(&self, _u: Point2f, _pdf: &mut Float) -> InteractionCommon {
        println!("FATAL: Curve::sample not implemented.");
        InteractionCommon::default()
    }
    pub fn sample_with_ref_point(
        &self,
        iref: &InteractionCommon,
        u: Point2f,
        pdf: &mut Float,
    ) -> InteractionCommon {
        let intr: InteractionCommon = self.sample(u, pdf);
        let mut wi: Vector3f = intr.p - iref.p;
        if wi.length_squared() == 0.0 as Float {
            *pdf = 0.0 as Float;
        } else {
            wi = wi.normalize();
            // convert from area measure, as returned by the Sample()
            // call above, to solid angle measure.
            *pdf *= pnt3_distance_squaredf(&iref.p, &intr.p) / nrm_abs_dot_vec3f(&intr.n, &-wi);
            if (*pdf).is_infinite() {
                *pdf = 0.0 as Float;
            }
        }
        intr
    }
    pub fn pdf_with_ref_point(&self, iref: &dyn Interaction, wi: &Vector3f) -> Float {
        // intersect sample ray with area light geometry
        let ray: Ray = iref.spawn_ray(wi);
        // ignore any alpha textures used for trimming the shape when
        // performing this intersection. Hack for the "San Miguel"
        // scene, where this is used to make an invisible area light.
        let mut t_hit: Float = 0.0;
        let mut isect_light: SurfaceInteraction = SurfaceInteraction::default();
        if self.intersect(&ray, &mut t_hit, &mut isect_light) {
            // convert light sample weight to solid angle measure
            let mut pdf: Float = pnt3_distance_squaredf(iref.get_p(), &isect_light.common.p)
                / (nrm_abs_dot_vec3f(&isect_light.common.n, &-(*wi)) * self.area());
            if pdf.is_infinite() {
                pdf = 0.0 as Float;
            }
            pdf
        } else {
            0.0 as Float
        }
    }
}

pub fn create_curve_shape(
    o2w: &Transform,
    w2o: &Transform,
    reverse_orientation: bool,
    params: &ParamSet,
) -> Vec<Arc<Shape>> {
    let width: Float = params.find_one_float("width", 1.0 as Float);
    let width0: Float = params.find_one_float("width0", width);
    let width1: Float = params.find_one_float("width1", width);
    let cp = params.find_point3f("P");
    if cp.len() != 4_usize {
        panic!(
            "Must provide 4 control points for \"curve\" primitive. ((Provided {:?}).",
            cp.len()
        );
    }
    let curve_type_string: String = params.find_one_string("type", String::from("flat"));
    let mut curve_type: CurveType = CurveType::Flat;
    if curve_type_string == "flat" {
        curve_type = CurveType::Flat;
    } else if curve_type_string == "ribbon" {
        curve_type = CurveType::Ribbon;
    } else if curve_type_string == "cylinder" {
        curve_type = CurveType::Cylinder;
    } else {
        println!(
            "ERROR: Unknown curve type \"{:?}\". Using \"flat\".",
            curve_type_string
        );
    }
    let mut n: Vec<Normal3f> = params.find_normal3f("N");
    if !n.is_empty() {
        if curve_type_string != "ribbon" {
            println!("WARNING: Curve normals are only used with \"ribbon\" type curves.");
            n = Vec::new();
        } else if n.len() != 2_usize {
            panic!(
                "Must provide two normals with \"N\" parameter for ribbon curves. (Provided {:?}).",
                n.len()
            );
        }
    }
    let sd: i32 = params.find_one_int("splitdepth", 3_i32);
    if curve_type == CurveType::Ribbon && n.is_empty() {
        panic!("Must provide normals \"N\" at curve endpoints with ribbon curves.");
    }
    if n.is_empty() {
        Curve::create(
            *o2w,
            *w2o,
            reverse_orientation,
            &[cp[0], cp[1], cp[2], cp[3]],
            width0,
            width1,
            curve_type,
            None,
            sd,
        )
    } else {
        Curve::create(
            *o2w,
            *w2o,
            reverse_orientation,
            &[cp[0], cp[1], cp[2], cp[3]],
            width0,
            width1,
            curve_type,
            Some([n[0], n[1]]),
            sd,
        )
    }
}

// Curve Utility Functions

fn blossom_bezier(p: &[Point3f; 4], u0: Float, u1: Float, u2: Float) -> Point3f {
    let a: [Point3f; 3] = [
        pnt3_lerp(u0, &p[0], &p[1]),
        pnt3_lerp(u0, &p[1], &p[2]),
        pnt3_lerp(u0, &p[2], &p[3]),
    ];
    let b: [Point3f; 2] = [pnt3_lerp(u1, &a[0], &a[1]), pnt3_lerp(u1, &a[1], &a[2])];
    pnt3_lerp(u2, &b[0], &b[1])
}

fn subdivide_bezier(cp: &[Point3f; 4], cp_split: &mut [Point3f; 7]) {
    cp_split[0] = cp[0];
    cp_split[1] = (cp[0] + cp[1]) / 2.0 as Float;
    cp_split[2] = (cp[0] + cp[1] * 2.0 as Float + cp[2]) / 4.0 as Float;
    cp_split[3] = (cp[0] + cp[1] * 3.0 as Float + cp[2] * 3.0 as Float + cp[3]) / 8.0 as Float;
    cp_split[4] = (cp[1] + cp[2] * 2.0 as Float + cp[3]) / 4.0 as Float;
    cp_split[5] = (cp[2] + cp[3]) / 2.0 as Float;
    cp_split[6] = cp[3];
}

fn eval_bezier(cp: &[Point3f; 4], u: Float, deriv: Option<&mut Vector3f>) -> Point3f {
    let cp1: [Point3f; 3] = [
        pnt3_lerp(u, &cp[0], &cp[1]),
        pnt3_lerp(u, &cp[1], &cp[2]),
        pnt3_lerp(u, &cp[2], &cp[3]),
    ];
    let cp2: [Point3f; 2] = [
        pnt3_lerp(u, &cp1[0], &cp1[1]),
        pnt3_lerp(u, &cp1[1], &cp1[2]),
    ];
    if let Some(deriv) = deriv {
        *deriv = (cp2[1] - cp2[0]) * 3.0 as Float;
    }
    pnt3_lerp(u, &cp2[0], &cp2[1])
}

fn log2(v: Float) -> i32 {
    if v < 1.0 as Float {
        return 0_i32;
    }
    let bits: i32 = float_to_bits(v) as i32;

    // https://graphics.stanford.edu/~seander/bithacks.html#IntegerLog

    // (With an additional add so get round-to-nearest rather than
    // round down.)
    let one_or_zero = if (1 << 22) > 0 { 1_i32 } else { 0_i32 };
    (bits >> 23) - 127 + (bits & one_or_zero)
}