1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
// std
use std::f32::consts::PI;
use std::sync::Arc;
// pbrt
use crate::core::geometry::{nrm_abs_dot_vec3f, pnt3_distance_squaredf};
use crate::core::geometry::{Bounds3f, Normal3f, Point2f, Point3f, Ray, Vector3f};
use crate::core::interaction::{Interaction, InteractionCommon, SurfaceInteraction};
use crate::core::material::Material;
use crate::core::pbrt::Float;
use crate::core::pbrt::{clamp_t, radians};
use crate::core::sampling::concentric_sample_disk;
use crate::core::transform::Transform;

// see disk.h

#[derive(Clone)]
pub struct Disk {
    pub height: Float,
    pub radius: Float,
    pub inner_radius: Float,
    pub phi_max: Float,
    // inherited from class Shape (see shape.h)
    pub object_to_world: Transform,
    pub world_to_object: Transform,
    pub reverse_orientation: bool,
    pub transform_swaps_handedness: bool,
    pub material: Option<Arc<Material>>,
}

impl Default for Disk {
    fn default() -> Self {
        let object_to_world: Transform = Transform::default();
        Disk {
            // Shape
            object_to_world,
            world_to_object: Transform::default(),
            reverse_orientation: false,
            transform_swaps_handedness: object_to_world.swaps_handedness(),
            // Disk
            height: 0.0,
            radius: 1.0,
            inner_radius: 0.0,
            phi_max: radians(360.0),
            material: None,
        }
    }
}

impl Disk {
    pub fn new(
        object_to_world: Transform,
        world_to_object: Transform,
        reverse_orientation: bool,
        height: Float,
        radius: Float,
        inner_radius: Float,
        phi_max: Float,
    ) -> Self {
        Disk {
            // Shape
            object_to_world,
            world_to_object,
            reverse_orientation,
            transform_swaps_handedness: object_to_world.swaps_handedness(),
            // Disk
            height,
            radius,
            inner_radius,
            phi_max: radians(clamp_t(phi_max, 0.0, 360.0)),
            material: None,
        }
    }
    // Shape
    pub fn object_bound(&self) -> Bounds3f {
        Bounds3f {
            p_min: Point3f {
                x: -self.radius,
                y: -self.radius,
                z: self.height,
            },
            p_max: Point3f {
                x: self.radius,
                y: self.radius,
                z: self.height,
            },
        }
    }
    pub fn world_bound(&self) -> Bounds3f {
        // in C++: Bounds3f Shape::WorldBound() const { return (*ObjectToWorld)(ObjectBound()); }
        self.object_to_world.transform_bounds(&self.object_bound())
    }
    pub fn intersect(&self, r: &Ray, t_hit: &mut Float, isect: &mut SurfaceInteraction) -> bool {
        // TODO: ProfilePhase p(Prof::ShapeIntersect);
        // transform _Ray_ to object space
        let mut o_err: Vector3f = Vector3f::default();
        let mut d_err: Vector3f = Vector3f::default();
        let ray: Ray = self
            .world_to_object
            .transform_ray_with_error(r, &mut o_err, &mut d_err);

        // compute plane intersection for disk

        // reject disk intersections for rays parallel to the disk's plane
        if ray.d.z == 0.0 {
            return false;
        }
        let t_shape_hit: Float = (self.height - ray.o.z) / ray.d.z;
        if t_shape_hit <= 0.0 || t_shape_hit >= ray.t_max.get() {
            return false;
        }
        // see if hit point is inside disk radii and $\phimax$
        let mut p_hit: Point3f = ray.position(t_shape_hit);
        let dist2: Float = p_hit.x * p_hit.x + p_hit.y * p_hit.y;
        if dist2 > self.radius * self.radius || dist2 < self.inner_radius * self.inner_radius {
            return false;
        }
        // test disk $\phi$ value against $\phimax$
        let mut phi: Float = p_hit.y.atan2(p_hit.x);
        if phi < 0.0 {
            phi += 2.0_f32 * PI;
        }
        if phi > self.phi_max {
            return false;
        }
        // find parametric representation of disk hit
        let u: Float = phi / self.phi_max;
        let r_hit: Float = dist2.sqrt();
        let one_minus_v: Float = (r_hit - self.inner_radius) / (self.radius - self.inner_radius);
        let v: Float = 1.0 - one_minus_v;
        let dpdu: Vector3f = Vector3f {
            x: -self.phi_max * p_hit.y,
            y: self.phi_max * p_hit.x,
            z: 0.0,
        };
        let dpdv: Vector3f = Vector3f {
            x: p_hit.x,
            y: p_hit.y,
            z: 0.0,
        } * (self.inner_radius - self.radius)
            / r_hit;
        let dndu: Normal3f = Normal3f::default();
        let dndv: Normal3f = Normal3f::default();
        // refine disk intersection point
        p_hit.z = self.height;
        // compute error bounds for disk intersection
        let p_error: Vector3f = Vector3f::default();
        // initialize _SurfaceInteraction_ from parametric information
        let uv_hit: Point2f = Point2f { x: u, y: v };
        let wo: Vector3f = -ray.d;
        *isect = SurfaceInteraction::new(
            &p_hit, &p_error, uv_hit, &wo, &dpdu, &dpdv, &dndu, &dndv, ray.time, None,
        );
        self.object_to_world.transform_surface_interaction(isect);
        // if let Some(ref shape) = si.shape {
        //     isect.shape = Some(shape.clone());
        // }
        // if let Some(primitive) = si.primitive {
        //     isect.primitive = Some(primitive.clone());
        // }
        *t_hit = t_shape_hit;
        true
    }
    pub fn intersect_p(&self, r: &Ray) -> bool {
        // TODO: ProfilePhase p(Prof::ShapeIntersectP);
        // transform _Ray_ to object space
        let mut o_err: Vector3f = Vector3f::default();
        let mut d_err: Vector3f = Vector3f::default();
        let ray: Ray = self
            .world_to_object
            .transform_ray_with_error(r, &mut o_err, &mut d_err);

        // compute plane intersection for disk

        // reject disk intersections for rays parallel to the disk's plane
        if ray.d.z == 0.0 {
            return false;
        }
        let t_shape_hit: Float = (self.height - ray.o.z) / ray.d.z;
        if t_shape_hit <= 0.0 || t_shape_hit >= ray.t_max.get() {
            return false;
        }
        // see if hit point is inside disk radii and $\phimax$
        let p_hit: Point3f = ray.position(t_shape_hit);
        let dist2: Float = p_hit.x * p_hit.x + p_hit.y * p_hit.y;
        if dist2 > self.radius * self.radius || dist2 < self.inner_radius * self.inner_radius {
            return false;
        }
        // test disk $\phi$ value against $\phimax$
        let mut phi: Float = p_hit.y.atan2(p_hit.x);
        if phi < 0.0 {
            phi += 2.0_f32 * PI;
        }
        if phi > self.phi_max {
            return false;
        }
        true
    }
    pub fn get_reverse_orientation(&self) -> bool {
        self.reverse_orientation
    }
    pub fn get_transform_swaps_handedness(&self) -> bool {
        self.transform_swaps_handedness
    }
    pub fn get_object_to_world(&self) -> Transform {
        self.object_to_world
    }
    pub fn area(&self) -> Float {
        self.phi_max
            * 0.5 as Float
            * (self.radius * self.radius - self.inner_radius * self.inner_radius)
    }
    pub fn sample(&self, u: Point2f, pdf: &mut Float) -> InteractionCommon {
        let pd: Point2f = concentric_sample_disk(&u);
        let p_obj: Point3f = Point3f {
            x: pd.x * self.radius,
            y: pd.y * self.radius,
            z: self.height,
        };
        let mut it: InteractionCommon = InteractionCommon {
            n: self
                .object_to_world
                .transform_normal(&Normal3f {
                    x: 0.0 as Float,
                    y: 0.0 as Float,
                    z: 1.0 as Float,
                })
                .normalize(),
            ..Default::default()
        };
        if self.reverse_orientation {
            it.n *= -1.0 as Float;
        }
        let pt_error: Vector3f = Vector3f::default();
        it.p =
            self.object_to_world
                .transform_point_with_abs_error(&p_obj, &pt_error, &mut it.p_error);
        *pdf = 1.0 as Float / self.area();
        it
    }
    pub fn sample_with_ref_point(
        &self,
        iref: &InteractionCommon,
        u: Point2f,
        pdf: &mut Float,
    ) -> InteractionCommon {
        let intr: InteractionCommon = self.sample(u, pdf);
        let mut wi: Vector3f = intr.p - iref.p;
        if wi.length_squared() == 0.0 as Float {
            *pdf = 0.0 as Float;
        } else {
            wi = wi.normalize();
            // convert from area measure, as returned by the Sample()
            // call above, to solid angle measure.
            *pdf *= pnt3_distance_squaredf(&iref.p, &intr.p) / nrm_abs_dot_vec3f(&intr.n, &-wi);
            if (*pdf).is_infinite() {
                *pdf = 0.0 as Float;
            }
        }
        intr
    }
    pub fn pdf_with_ref_point(&self, iref: &dyn Interaction, wi: &Vector3f) -> Float {
        // intersect sample ray with area light geometry
        let ray: Ray = iref.spawn_ray(wi);
        // ignore any alpha textures used for trimming the shape when
        // performing this intersection. Hack for the "San Miguel"
        // scene, where this is used to make an invisible area light.
        let mut t_hit: Float = 0.0;
        let mut isect_light: SurfaceInteraction = SurfaceInteraction::default();
        if self.intersect(&ray, &mut t_hit, &mut isect_light) {
            // convert light sample weight to solid angle measure
            let mut pdf: Float = pnt3_distance_squaredf(iref.get_p(), &isect_light.common.p)
                / (nrm_abs_dot_vec3f(&isect_light.common.n, &-(*wi)) * self.area());
            if pdf.is_infinite() {
                pdf = 0.0 as Float;
            }
            pdf
        } else {
            0.0 as Float
        }
    }
}