Crate rayon_core
source · [−]Expand description
Rayon-core houses the core stable APIs of Rayon.
These APIs have been mirrored in the Rayon crate and it is recommended to use these from there.
join
is used to take two closures and potentially run them in parallel.
- It will run in parallel if task B gets stolen before task A can finish.
- It will run sequentially if task A finishes before task B is stolen and can continue on task B.
scope
creates a scope in which you can run any number of parallel tasks.
These tasks can spawn nested tasks and scopes, but given the nature of work stealing, the order of execution can not be guaranteed.
The scope will exist until all tasks spawned within the scope have been completed.
spawn
add a task into the ‘static’ or ‘global’ scope, or a local scope created by the scope()
function.
ThreadPool
can be used to create your own thread pools (using ThreadPoolBuilder
) or to customize the global one.
Tasks spawned within the pool (using install()
, join()
, etc.) will be added to a deque,
where it becomes available for work stealing from other threads in the local threadpool.
Restricting multiple versions
In order to ensure proper coordination between threadpools, and especially
to make sure there’s only one global threadpool, rayon-core
is actively
restricted from building multiple versions of itself into a single target.
You may see a build error like this in violation:
error: native library `rayon-core` is being linked to by more
than one package, and can only be linked to by one package
While we strive to keep rayon-core
semver-compatible, it’s still
possible to arrive at this situation if different crates have overly
restrictive tilde or inequality requirements for rayon-core
. The
conflicting requirements will need to be resolved before the build will
succeed.
Structs
Contains the rayon thread pool configuration. Use ThreadPoolBuilder
instead.
Provides the calling context to a closure called by join_context
.
Represents a fork-join scope which can be used to spawn any number of tasks.
See scope()
for more information.
Represents a fork-join scope which can be used to spawn any number of tasks.
Those spawned from the same thread are prioritized in relative FIFO order.
See scope_fifo()
for more information.
Thread builder used for customization via
ThreadPoolBuilder::spawn_handler
.
Represents a user created thread-pool.
Error when initializing a thread pool.
Used to create a new ThreadPool
or to configure the global rayon thread pool.
Functions
Returns the number of threads in the current registry. If this code is executing within a Rayon thread-pool, then this will be the number of threads for the thread-pool of the current thread. Otherwise, it will be the number of threads for the global thread-pool.
If called from a Rayon worker thread, indicates whether that
thread’s local deque still has pending tasks. Otherwise, returns
None
. For more information, see the
ThreadPool::current_thread_has_pending_tasks()
method.
If called from a Rayon worker thread, returns the index of that
thread within its current pool; if not called from a Rayon thread,
returns None
.
Creates a “fork-join” scope s
and invokes the closure with a
reference to s
. This closure can then spawn asynchronous tasks
into s
. Those tasks may run asynchronously with respect to the
closure; they may themselves spawn additional tasks into s
. When
the closure returns, it will block until all tasks that have been
spawned into s
complete.
Creates a “fork-join” scope s
with FIFO order, and invokes the
closure with a reference to s
. This closure can then spawn
asynchronous tasks into s
. Those tasks may run asynchronously with
respect to the closure; they may themselves spawn additional tasks
into s
. When the closure returns, it will block until all tasks
that have been spawned into s
complete.
Deprecated in favor of ThreadPoolBuilder::build_global
.
Takes two closures and potentially runs them in parallel. It returns a pair of the results from those closures.
Identical to join
, except that the closures have a parameter
that provides context for the way the closure has been called,
especially indicating whether they’re executing on a different
thread than where join_context
was called. This will occur if
the second job is stolen by a different thread, or if
join_context
was called from outside the thread pool to begin
with.
Returns the maximum number of threads that Rayon supports in a single thread-pool.
Creates a “fork-join” scope s
and invokes the closure with a
reference to s
. This closure can then spawn asynchronous tasks
into s
. Those tasks may run asynchronously with respect to the
closure; they may themselves spawn additional tasks into s
. When
the closure returns, it will block until all tasks that have been
spawned into s
complete.
Creates a “fork-join” scope s
with FIFO order, and invokes the
closure with a reference to s
. This closure can then spawn
asynchronous tasks into s
. Those tasks may run asynchronously with
respect to the closure; they may themselves spawn additional tasks
into s
. When the closure returns, it will block until all tasks
that have been spawned into s
complete.
Fires off a task into the Rayon threadpool in the “static” or
“global” scope. Just like a standard thread, this task is not
tied to the current stack frame, and hence it cannot hold any
references other than those with 'static
lifetime. If you want
to spawn a task that references stack data, use the scope()
function to create a scope.
Fires off a task into the Rayon threadpool in the “static” or
“global” scope. Just like a standard thread, this task is not
tied to the current stack frame, and hence it cannot hold any
references other than those with 'static
lifetime. If you want
to spawn a task that references stack data, use the scope_fifo()
function to create a scope.